Prism: Revealing Hidden Functional Clusters from Massive Instances in Cloud Systems

Jinyang Liu¹, Zhihan Jiang¹, Jiazhen Gu¹, Junjie Huang¹, Zhuangbin Chen², Cong Feng³, Zengyin Yang³, Yongqiang Yang³, Michael R. Lyu¹

¹The Chinese University of Hong Kong, ²Sun Yat-sen University, ³Computing and Networking Innovation Lab, Huawei Cloud Computing Technology Co., Ltd

he Chinese University of Hong Kong

Cloud Computing

• Many applications have migrated to the cloud.

Cloud Infrastructure

Hierarchical Cloud Infrastructure

Cloud Infrastructure

Virtualization from hardware to virtual instances enhances resource utilization and simplifies usage for customers.

Cloud Infrastructure

However, it **reduces cloud observability** for cloud vendors during maintenance tasks.

A Motivating Example

Massive **Black-box** Instances (typically millions of)

A Motivating Example

A Motivating Example

Our Problem

Functional Clusters

Massive **Black-box** Instances (typically millions of)

Clustered Instances (Serving the same functionalities)

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Data visible to cloud vendors

• Two types of typical monitoring data

Trace: (srcIp, dstIp, srcPort, dstPort)

Communication Traces

Monitoring Metrics

11

A Pilot Study

• 3,062 internal instances covering 397 types of functionalities

Method

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Challenges:

- Massive instances (typically millions in cloud systems)
- Limited noisy monitoring data for cloud vendors

Our Solution: **Prism**

Method

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Challenges:

- Massive instances (typically millions in cloud systems)
- Limited noisy monitoring data for cloud vendors

Our Solution: **Prism**

Method

Trace-based Partitioning

Input:

- All instances
- Communication traces

Output:

• Coarse-grained chunks

Metric-based Clustering

Input:

- Coarse-grained chunks
- Monitoring metrics (cpu, mem, disk, etc.)

Output:

• Functional clusters

Dynamic Time Warping (DTW) Distance

Apply independently for each small chunk (<=50 instances)

Evaluation

• Datasets

Datasets	# Functionalities	# Instances	# Traces	# Metrics
Dataset \mathcal{A}	292	2,035	100.2 M	7.25 M
Dataset \mathcal{B}	105	1,027	121.6 M	3.71 M
Total	397	3,062	212.6 M	10.96 M

• Research Questions

- RQ1: What is the **effectiveness** of Prism?
- RQ2: What is the **contribution of each component**?
- RQ3: What is the **impact of parameter settings**?
- RQ4: What is the **efficiency** of Prism?

 Real-world data from Huawei Cloud

- Manually labeled internal Instances
- Metrics
 - Homogeneity: how precise?
 - Completeness: how complete?
 - V-measure: a balanced metric

Evaluation

• RQ1: Effectiveness

Methods	Dataset \mathcal{A}			Dataset \mathcal{B}			
	Homo.	Comp.	V Meas.	Homo.	Comp.	V Meas.	
OSImage	0.238	0.894	0.376	0.258	0.889	0.400	
CloudCluster	0.346	0.748	0.473	0.369	0.753	0.495	
ROCKA	0.831	0.882	0.856	0.875	0.900	0.887	
OmniCluster	0.932	0.862	<u>0.896</u>	0.944	0.877	<u>0.909</u>	
Prism	0.976	0.916	0.945	0.979	0.922	0.950	

• RQ2: Ablation

Mathada	Dataset \mathcal{A}			Dataset \mathcal{B}		
Wiethous	Homo.	Comp.	V Meas.	Homo.	Comp.	V Meas.
Prism	0.976	0.916	0.945	0.979	0.922	0.950
Prism w/o Metrics	0.462	0.920	0.615	0.463	0.949	0.622
Prism w/o Traces	0.949	0.869	<u>0.907</u>	0.915	0.893	<u>0.904</u>

• Prism outperforms all state-of-the-art comparative methods.

• Both components contribute to the overall performance.

Evaluation

• RQ3: Parameter Sensitivity

• Prism is robust to threshold settings for both LSH and HAC.

• RQ4: Efficiency

Methods	# Instances 1,000 5,000 10,000 50,000 100,00					
CloudCluster	0.9	23.87	78.65	1768.7	5585.7	
ROCKA	80.7	1981.8	7850.3	-	-	
OmniCluster	31.7	264.6	1048.6	26531.8	-	
Prism w/o Metrics	3.9	19.1	40.2	195.1	392.4	
Prism w/o Traces	80.3	2066.1	8232.3	-		
Prism	18.2	89.4	183.9	929.2	1912.7	

• Prism can efficiently handle massive instances in cloud systems.

Industrial Experience

• Use case 1: vulnerable deployment identification

Industrial Experience

• Use case 2: latent issue discovery

Conclusion

- Cloud vendors struggle to ensure the reliability of large virtual instances due to limited observability.
- The proposed **Prism** reveals functional clusters by leveraging communication patterns and resource patterns among instances.
- Prism is effective and efficienct, which provides insights for enhanced cloud monitoring.

Thank you!

Find code & dataset in **OpsPAI** (IT operations powered by <u>AI</u>).

This work!

https://github.com/OpsPAI/

The Chinese University of Hong Kong

