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Abstract—Ensuring the reliability of cloud systems is critical
for both cloud vendors and customers. Cloud systems often
rely on virtualization techniques to create instances of hardware
resources, such as virtual machines. However, virtualization hin-
ders the observability of cloud systems, making it challenging to
diagnose platform-level issues. To improve system observability,
we propose to infer functional clusters of instances, i.e., groups
of instances having similar functionalities. We first conduct a
pilot study on a large-scale cloud system, i.e., Huawei Cloud,
demonstrating that instances having similar functionalities share
similar communication and resource usage patterns. Motivated
by these findings, we formulate the identification of functional
clusters as a clustering problem and propose a non-intrusive
solution called Prism. Prism adopts a coarse-to-fine clustering
strategy. It first partitions instances into coarse-grained chunks
based on communication patterns. Within each chunk, Prism
further groups instances with similar resource usage patterns to
produce fine-grained functional clusters. Such a design reduces
noises in the data and allows Prism to process massive instances
efficiently. We evaluate Prism on two datasets collected from
the real-world production environment of Huawei Cloud. Our
experiments show that Prism achieves a v-measure of ∼0.95,
surpassing existing state-of-the-art solutions. Additionally, we
illustrate the integration of Prism within monitoring systems for
enhanced cloud reliability through two real-world use cases.

Index Terms—functional clusters, cloud observability, in-
stances, cloud systems, software reliability

I. INTRODUCTION

Cloud providers such as Amazon AWS, Microsoft Azure,
and Google Cloud Platform (GCP) have provided a wide range
of services and ensure availability 24/7 to their customers
worldwide. Guaranteeing the reliability of a cloud system is
crucial since even a brief downtime could result in significant
financial losses for cloud vendors and their customers [1], [2].

Cloud systems typically leverage virtualization techniques
to abstract hardware resources, such as computation, storage,
and networks, into instances (e.g., virtual machines), serving as
basic components of cloud services [3]–[5]. Such architecture
provides flexibility and elasticity for tenants to subscribe
various instances to run services with different functionalities
e.g., machine learning and database services. This, in turn,
enables them to create complex and customizable applications.
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However, just as each coin has two sides, such practice
makes it more challenging to ensure the reliability of cloud
systems. In particular, virtualization degrades the observability
of the system, i.e., the ability to understand the system internal
execution state. Virtualization introduces an additional layer of
abstraction between the underlying hardware and the running
applications, making it difficult to correlate the problems
across different layers [6]. For example, an issue at the
application layer may be caused by problems either within
the instance itself or with the underlying hardware.

To enhance system observability, a common practice for
cloud vendors is deploying a variety of monitors to collect
runtime information of each instance [7]–[10], which record
only data related to reliability issues without touching users’
privacy. The monitoring data are then utilized for downstream
maintenance tasks. For example, communication traces, which
record network packet transmissions between instances (e.g.,
the source and destination IP addresses and port numbers),
are often used to identify abnormal network behaviors, such
as network attacks and excessive traffics [11]–[15]. On the
other hand, performance metrics, such as CPU utilization and
memory usage, are commonly utilized for detecting anomalies
and localizing faults [16]–[18].

The monitoring data have provided valuable insights to
ensure the reliability of individual instances. However, cloud
vendors still view instances as distributed black boxes without
knowing how an application is deployed across the infrastruc-
ture [19]. Consequently, it can be challenging to assess the
impact of issues at the platform level (such as instance or
hardware problems) on applications that are deployed on top
of them. For example, packet losses in individual instances
are commonplace in cloud systems and are generally ignored,
as they seldom impact customer applications. However, when
multiple instances, all supporting the same application, con-
currently experience packet losses, it likely indicates a more
significant issue that users may encounter, such as interrup-
tions due to network disconnections. The limited awareness
of relationships between instances complicates the detection
of such problems, thereby impeding timely mitigation efforts.

To bridge this gap and improve the system observability, we
propose to infer functional clusters of instances, where each



cluster contains the instances having similar functionalities.
With this additional knowledge, cloud vendors can enhance
the reliability of the cloud by improving various downstream
management and maintenance tasks (to be detailed in §V).
However, there are two major challenges that we need to
overcome to achieve this goal. The first challenge is that only
limited information is available. As mentioned before, cloud
vendors cannot access tenants’ private data, including logs and
source codes. A non-intrusive solution that relies solely on
external data (e.g., traces and metrics) is required. The second
challenge is the large scale of instances in cloud systems.
A typical cloud system can consist of millions of instances
in total [19], resulting in an enormous amount of data for
analysis. Valuable insights are concealed within the vast and
noisy data of cloud systems, making it difficult to reveal the
hidden function clusters.

To tackle the first challenge and explore a feasible non-
intrusive solution, we first conduct a pilot study on the services
deployed in Huawei Cloud. For privacy reasons, we only use
internal services of Huawei Cloud without touching tenants’
instances. Specifically, we utilize a total of 3,062 internal
instances covering services with 397 types of functionalities
and study whether different functionalities can be identified
simply based on external monitoring data. Our study uncovers
that instances having similar functionalities share similar com-
munication and resource usage patterns. Communication pat-
terns mean that instances with similar purposes may frequently
communicate with the same set of destinations, reflected in
their communication traces. We find that 75% of instances
within the same functional clusters have a high overlap (≥
0.7) in their communicated destinations. Conversely, for 92%
of instances with different functionalities, the overlap is only
less than 0.2. Additionally, despite the large scale of instances,
99.1% of instances communicated with a limited number
of destinations (fewer than 50), indicating a strong locality
in communication patterns. Resource usage patterns, on the
other hand, denote that instances with similar functionalities
would demonstrate comparable resource consumption, which
is reflected in their metrics. For example, a machine learn-
ing service is expected to exhibit greater CPU usage, while
instances running an in-memory database like Redis would
primarily require more memory. We find that most (∼75%) of
instance pairs with the same functionalities have high metric-
based similarities (≥ 0.8), while the similarities decrease for
those instances having different functionalities.

Motivated by the two kinds of inherent patterns of the
instances, we formulate the identification of functional clus-
ters as a clustering problem. Intuitively, we aim to cluster
the instances by harmoniously integrating the communication
patterns and resource usage patterns. To achieve this goal
and alleviate noises within the tremendous data, we propose
Prism, which adopts a coarse-to-fine clustering strategy. Prism
consists of two components, i.e., trace-based partitioning and
metric-based clustering. In the trace-based partitioning step,
we leverage the communication patterns to coarsely divide
the entire large set of instances into smaller chunks. This
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Fig. 1. The hierarchical structure of cloud systems

step helps limit the comparison space within each chunk, thus
reducing the complexity of the subsequent clustering process
and eliminating noises introduced by instances from other
clusters. In the metric-based clustering step, we perform fine-
grained clustering by comparing the resource usage patterns of
instances in a pairwise manner. This step allows us to carefully
group instances within the same functional cluster.

To evaluate Prism, we conduct extensive experiments on two
datasets collected from the production environment of Huawei
Cloud, a top-tier cloud provider serving global customers. To
evaluate the generality of Prism, these datasets were procured
from two regions of Huawei Cloud, each covering a diverse
set of functionalities. The experimental results show that
Prism achieves a v-measure of ∼0.95, surpassing existing
state-of-the-art solutions, and is robust to parameter changes.
Moreover, Prism is both scalable and efficient, with a linear
time complexity, enabling it to handle a substantial number
of instances. Furthermore, we have deployed Prism in Huawei
Cloud, and we share two real-world use cases to demonstrate
the usefulness of functional clusters in maintaining Huawei
Cloud. In the first case, functional clusters showcase the ability
to detect vulnerable application deployments that may be at
risk of disruption due to hardware failures. The second case
shows how functional clusters can aggregate minor packet loss
errors across instances, thus enabling identification of latent
issues that are not observable at either the instance or region
level. We summarize our contributions as follows:
• We conduct a pilot study to understand the characteristics

of functional clusters across over 3,000 instances based on a
real-world cloud system, Huawei Cloud (§II). Our findings
reveal two clues for identifying functional clusters (i.e.,
communication patterns and resource usage patterns).

• We design a non-intrusive solution called Prism to identify
functional clusters in large-scale cloud systems, which is
able to effectively capture and integrate the inherent commu-
nication and resource usage patterns among instances (§III).

• Extensive experiments are conducted on two real-world
industrial datasets (§IV). Our results demonstrate that Prism
is effective, efficient and practically useful in identifying
functional clusters in industrial cloud systems. Our dataset
and code are made public to benefit the community on
https://github.com/OpsPAI/Prism.

II. BACKGROUND AND PILOT STUDY

In this section, we first discuss the background of cloud
systems and clarify the terminologies used. Then, we present

https://github.com/OpsPAI/Prism
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Fig. 2. Results of the study on communication and resource usage patterns.

a pilot study to understand the characteristics of instances that
can facilitate the identification of functional clusters.

A. Background

1) Cloud System Structure

Modern cloud systems are complex and highly distributed,
consisting of multiple layers of hardware and software com-
ponents that work together to provide on-demand computing
resources to tenants. Fig. 1 shows the hierarchical structure
of a typical cloud system. At the lowest layer, hardware
resources such as physical machines, storage, and networking
equipment form the underlying infrastructure. These resources
are virtualized into environments known as instances (e.g.,
virtual machines), which can be dynamically created, scaled,
and terminated as needed, forming a layer of virtualization. On
top of these instances, tenants can deploy services with a broad
range of functionalities that run in different programming lan-
guages and frameworks. These functionalities can either serve
as standalone applications or be combined to form complex
applications. For example, an online shopping application may
consist of services offering interdependent functionalities like
load balancing, user authentication and databases. To ensure
scalability and fault tolerance, multiple copies (or replicas) of
the same service are typically created and distributed across
the cloud environment to support a single functionality. This
approach enables handling user traffic spikes while guaran-
teeing high availability of the system in case of instance
failures. It is crucial to timely detect potential issues in
the services with various functionalities that constitute the
application in order to ensure its overall availability. This
paper focuses on discovering functional clusters containing
instances with similar functionalities, which are smaller and
more manageable units than complex applications. With this
information, operators are allowed to build more actionable
monitoring metrics for safeguarding each functionality.

2) Cloud System Monitoring

Monitoring is a common practice for top-tier cloud vendors,
such as AWS CloudWatch [20], Azure Monitor [21] and
Google Cloud Monitoring [22]. Monitoring tools are used to
collect various types of data about the system’s performance
and behavior. Two key types of data are commonly collected
for each instance: communication traces and performance
metrics. Communication traces data, are records of network
transmissions between instances in a cloud environment. These
traces are typically generated by network monitoring tools

(e.g., flow logs [23]–[25]) and capture metadata about the net-
work traffic, such as the source and destination IP addresses,
port numbers, and protocol types. By collecting and analyzing
these types of data, cloud system operators can take proactive
measures to ensure system security and reliability [11]–[15].
Performance metrics, on the other hand, includes information
such as memory usage and network throughput organized in
the form of time series, which are used to detect and diagnose
system performance issues [16], [17].

As shown in Fig. 1, tenants mostly focus on the func-
tionalities of services they deploy, rather than delving into
infrastructure-level details. On the other hand, due to privacy
concerns, cloud vendors only possess runtime information
about instances and hardware resources, lacking knowledge
about how customers deploy services with various func-
tionalities across these instances. While cloud providers do
possess some metadata about these instances, such as which
customers subscribe to particular instances, this information is
often too coarse-grained. For example, thousands of instances
belonging to the same enterprise customer could share the
same tenant ID [19], and these instances may host a diverse
range of functionalities. This paper aims to empower cloud
providers with insights into more fine-grained structure of the
functionalities by learning from instance data visible to them.
This would facilitate building an enhanced monitoring system
to improve the reliability of cloud systems (will show in §V).

B. A Pilot Study

In the following, we conduct a pilot study across over three
thousand internal instances in Huawei Cloud, aiming to find
clues to uncover the valuable functional clusters. We conduct
manual inspections in collaboration with the corresponding
teams within Huawei Cloud to understand their functionalities.
We obtain services covering 397 types of functionalities in
total, and more details about this dataset are in §IV-A.

1) Communication Pattern

The communication pattern serves as an indicator that
instances within the same functional cluster tend to exhibit
comparable network behaviors, as evidenced by the commu-
nication traces they generate. As inspired by [19], instances
within the same functional clusters might communicate with
similar destinations. To investigate this, we combine every two
instances and compute the overlap of their destinations through
Jaccard similarity [26]. Then, we compare the similarities
within the same clusters and across different clusters.
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Fig. 3. The overall workflow of Prism

Fig. 2-(a) presents the comparison results of communication
pattern similarities within or across clusters, where we can ob-
serve a significant difference between them. When examining
instances within the same cluster, we find that 50% of the
instance pairs demonstrate more than 0.8 similarity and over
75% of them exhibit more than 0.6 similarity. In contrast,
when comparing instance pairs from different clusters, over
75% of the pairs exhibit a similarity score of 0, indicating no
overlap between their destinations. Additionally, 96% of the
pairs have a similarity score of <0.4, indicating that instances
from different clusters rarely communicate with the same
destinations. However, for some cross-cluster instances, there
are still a little overlap in their destinations. These destinations
are usually common services such as network gateway and
authentication that are shared by multiple applications.

To further understand the communication patterns, we study
how many different destinations one instance can frequently
communicate with. Fig. 2-(b) shows the results. We can find
that even though there are thousands of instances in total,
the majority of the instances only communicate with a small
number of destinations. For example, 84.3% of instances
communicate with 1 to 5 instances, and 99.1% of instances
communicate with less than 50 instances. This suggests a
strong locality of instances, i.e., most instances tend to com-
municate with a small set of other instances frequently.

2) Resource Usage Pattern

Intuitively, instances within the same functional cluster
should observe similar patterns in their resource consumption
(i.e., resource usage patterns). To investigate whether resource
usage patterns can be utilized to uncover functional clusters,
we analyze the similarities in the metric data among instances,
either within the same functional cluster or across different
clusters. Thus, we compare the multivariate metric similarity
on two instances using the multivariate dynamic time warping
(DTW) distances [27], a distance metric to compare a pair of
time series that may vary in timing (more details in §III).

Fig. 2-(c) shows the distribution of resource usage pattern
similarities among instances, either within or across functional
clusters. We can observe that the similarities of instance pairs
within clusters are generally large, with over 75% of such pairs
exhibiting 0.7 similarity or higher. In contrast, instance pairs
across clusters display smaller similarities, with 92% of pairs
across different clusters possessing less than 0.2 similarity.
However, it is worth noting that there is a small portion
(≤10%) of cross-cluster instance pairs that have high metric-
based similarities, with a value of ≥0.8. This is reasonable

since instances having different functionalities could behave
similarly, e.g., have a high CPU utilization. Nevertheless, it
still suggests that leveraging the similarities between instance
metrics is promising in distinguishing their functional clusters.
Summary. We summarize our findings as follows.
• Instances that belong to the same functional cluster exhibit

comparable communication patterns, as evidenced by the
considerable overlap in their communication destinations.
Furthermore, the analysis reveals that the majority of in-
stances interacted with a limited number of other instances,
indicating a strong locality of instances.

• Instances within clusters generally exhibit high similarities
in their resource usage patterns, while instance pairs across
clusters show smaller similarities.

• While communication and resource usage patterns provide
valuable insights, they are not entirely reliable indicators
for distinguishing between different functional clusters, as
some noises in the form of cross-cluster instances with high
similarities in both patterns are observed.

III. METHODOLOGY

A. Overview
The goal of this paper is to design a non-intrusive solution

to discover functional clusters among massive instances in a
large-scale cloud system. The input is an entire set of instances
and their associated monitoring data, i.e., communication
traces and performance metrics. The output of our approach
is multiple clusters, where each cluster represents a functional
cluster consisting of instances that have similar functionalities.

To achieve this goal, we propose Prism, an automated
approach that can effectively discover functional clusters based
on both the communication patterns and resource usage of in-
stances. Fig. 3 illustrates the overall workflow of Prism, which
comprises two main components: trace-based partitioning
and metric-based clustering. Given a set of instances, Prism
adopts a two-stage clustering process, which progressively
divides the entire set of instances to coarse-grained chunks,
then fine-grained functional clusters. Specifically, the trace-
based partitioning step is inspired by the strong locality
of communication patterns, as shown in §II-B1. Based on
communication patterns, Prism first separates all instances
into different chunks. Instances in the same chunk share
similar communication destinations. By dividing the complete
instances set into multiple small chunks, we can reduce the
noises introduced from other instances during the subsequent
fine-grained clustering step. For each chunk, metric-based
clustering is then applied to generate fine-grained clusters by



measuring the similarities of monitoring metrics of instances.
Finally, instances belonging to the same resultant cluster are
considered to have similar functionalities. Such a coarse-to-
fine design avoids pairwise comparisons between a large num-
ber of instances and reduces noises between instances, making
Prism salable and practical for large-scale cloud systems.

It is important to note that Prism relies solely on external
monitoring data and does not access any of the tenants’ private
data, which ensures that there are no privacy concerns. While
we can infer which instances have similar functionalities, we
cannot identify the specific type of the functionalities in use.
This approach maintains our tenants’ confidentiality.

B. Trace-based partitioning

As studied in §II-B1, instances sharing the same functional
clusters are more likely to communicate with a similar set of
destination hosts. Thus, the trace-based partitioning of Prism
measures the communication pattern similarity and divides
instances into coarse-grained chunks.
Data Preprocessing. Let xi represent an instance in the cloud
system. Communication traces can be represented as tuples
of the form (xsrc, xdst), where xsrc and xdst represent the
instances that communicate with each other. By analyzing the
communication traces, we can obtain the destination set of
each instance, denoted by Si = (x1, x2, x3, ...), which contains
all the instances that have communicated with xi. However,
as demonstrated in §II-B1, instances with dissimilar func-
tionalities may share common destinations, such as network
gateways, which can introduce noise when comparing the
communication patterns between instances. To mitigate this
issue, we remove instances that interact with more than 100
different instances, which is rare as shown in Fig. 2-(b).
Jaccard Similarity-based Partitioning. Next, we divide all
instances into chunks by measuring how much their destina-
tion sets overlap. To achieve this, a straightforward solution is
to calculate the Jaccard similarity [28] of destination sets of ev-
ery pair of instances, which is denoted as J(xi, xj) =

|Si∩Sj |
|Si∪Sj | ,

i.e., the ratio of the size of their intersection to the size of their
union. However, it requires conducting pairwise comparisons
between millions of instances in a large-scale cloud system.
This process can be extremely time-consuming and may render
the approach unfeasible in practice.

To address this issue, we propose to leverage locality-
sensitive hashing (LSH) [29] to enable efficient partitioning.
LSH is a technique developed for identifying similar items in
large datasets. Its idea involves hashing the items into signa-
tures such that similar items are more likely to be assigned to
the same bucket. Given a query, LSH can efficiently return
similar items with a sub-linear time cost without pairwise
comparison with the entire instance set. In our context, we
combine LSH with the MinHash function, which allows items
with high Jaccard similarities put into the same buckets [30].

Algorithm 1 describes the trace-based partitioning process.
First, we extract the destination sets S of each instance from
historical communication traces (lines 1-5). Second, for each
instance xi, we apply MinHash function to its destination

Algorithm 1: Trace-based Partitioning

Input: List of instances: X = {x1, x2, ..., xl};
Communication trace records: R = {r1, r2, ..., rt};
Similarity threshold: θLSH

Output: Multiple instance chunks: C = {C1, C2, ...}
Init: S ← Empty list of feature sets; MLSH ← empty LSH

model; U ← Disjoint-set data structure
1 // (1) Construct feature sets
2 for i← 1 to t do
3 xsrc, xdst ← ri
4 S[xsrc].insert(xdst)
5 end
6 // (2) Build the LSH model
7 for each instance xi ∈ X do
8 Si ← S[xi]
9 MLSH .insert(MinHash(Si))

10 end
11 // (3) Search neighbors and build chunks
12 for each instance xi ∈ X do
13 Si ← S[xi]
14 Ni = MLSH .search(Si, θLSH ) // find neighbors
15 for each instance xj ∈ Ni do
16 if U .findSet(xi) != U .findSet(xj) then
17 U .unionSet(xi, xj) // merge xi and neighbors
18 end
19 end
20 end
21 C ← U.getAllSets()

set Si to obtain the hash signature. The hash signature is
then inserted into the LSH model (lines 7-10), which assigns
the item to a bucket. Third, for each instance xi, we search
its nearest neighbors Ni within the buckets produced by the
LSH model (lines 12-14). Here, a manual-defined threshold
θLSH ∈ [0, 1] is included, where a smaller θLSH value allows
more dissimilar neighbors to be included. After that, we group
the instance xi with its neighbors Ni based on the Disjoint-set
data structure U (lines 15-19). This data structure U provides
two efficient operations, i.e., U.findSet that find the set that
contains a specific item and U.unionSet that merge two
disjoint sets. If we find the sets containing xi and containing xj

are disjoint (line 16), we merge these two sets (line 17) since
xi and xj are similar. In this way, we progressively divide the
entire set of instances into multiple disjoint sets (i.e., chunks)
managed by U . Finally, we can obtain all the instance chunks
C by enumerating the records in U (line 21).

The trace-based partitioning algorithm is highly efficient
for two reasons. First, we bypass the expensive pairwise
similarity computation for all the instances by using LSH with
MinHash. Secondly, we leverage the disjoint-set data structure
to merge similar instances into chunks efficiently. The findSet
and unionSet operations of the disjoint-set data structure can be
completed within nearly constant time complexity, which fur-
ther ensures the efficiency of the merging process. Moreover,
the number of neighbors Ni (line 14) is generally fewer than
50, which is much smaller than the total instance number X
(line 12) due to the locality of communication patterns (Fig. 2-
(b)), which improves Prism’s scalability, making it feasible for
large-scale cloud systems like Huawei Cloud.



C. Metric-based Clustering

Trace-based partitioning tends to group as many instances
as possible together, which can inevitably include instances
with different functionalities to the same chunk. The reason is
that instances from different clusters can still communicate to
the same destinations (as studied in §II-B1), and this leads to
overlap of the destination sets of these instances, which may
be wrongly grouped together.

To address this problem, we further group these instances
by utilizing more fine-grained monitoring metrics that record
detailed runtime information of instances (i.e., resource usage
patterns as studied in §II-B2). Each instance is monitored
via multiple dimensions to ensure its reliability, producing
multivariate metrics, including CPU utilization rate, network
incoming/outgoing bytes rate, disk read/write request rate, and
disk read/write bytes rate. In the following, we aim to calculate
a metric-based distance for each pair of instances. Then, we
can cluster those instances that are close to each other.
Data Preprocessing. We apply the following preprocessing
techniques to the raw metric data collected to remove noises
and normalize the data within a comparable scale. First, we
regard apparent extreme values as anomalous noises within
the metric data because these values can bias the subsequent
distance computation step. For each metric, we replace the data
points that are out of the three-sigma range with the average
value of the nearest ten points. Next, since the amplitude
scales of different metrics are different, e.g., network-related
metrics are highly variable and may range from tens of bytes
to millions of bytes. This can make the produced distances
incomparable between instances with different network traffic
volumes. To address this issue, we apply natural logarithm
to these metrics following [19] to make it more robust to
its variance. The logarithm only solves the issue of highly
variable amplitudes but does not ensure that the data points
fall within the same range. Therefore, finally, we apply min-
max normalization to scale each of the metrics to the range of
0-1, allowing comparison across different metrics. Formally,
using y to denote a metric time series, the normalized values
can be calculated as y′ = y−min(y)

max(y)−min(y) .
Metric-based Distance Calculation. For an instance x, its
preprocessed monitoring metrics form a group of multivariate
time series represented as a matrix Mi ∈ Rn×k, where n is the
number of timestamps and k is the number of metrics used.
We measure the metric-based similarity of two instances using
a distance that simultaneously considers all the multivariate
metrics of them. To achieve this, we first compare each metric,
then aggregate the distances to produce an overall distance.

Specifically, we adopt dynamic time warping (DTW) dis-
tances [27] for distance measurement. The reason we use
DTW is to overcome the problem that the monitoring metrics
of different instances can have time shifts, namely, these time
series may not be aligned in terms of the collection times-
tamps, making traditional distance measures such as Euclidean
distance ineffective. In contrast, DTW allows for flexible
matching of similar patterns in the time series, even when they

occur at different timestamps. Based on the DTW calculation,
the overall distance d(xi, xj) between two instances xi and
xj can be formulated as follows:

d(xi, xj) =

k∑
u=1

ω(i, j)u ×DTW
(
Mi(:, u),Mj(:, u)

)
, (1)

ω(i, j)u =
ω(i, j)′u∑k
v=1 ω(i, j)

′
v

, (2)

ω(i, j)′u =
1

2

(
σ(Mi(:, u)) + σ(Mj(:, u))

)
, (3)

where u denotes the metric in concern, Mi/j(: .u) is the uth

column of the corresponding metric matrix. In particular, we
use ω(i, j)u as a weight associated with the uth metric to mea-
sure the importance of each metric. Each weight is calculated
as the average of the standard deviation (i.e., σ(·)) of the two
metrics of corresponding instances as shown in Equation 3,
which is normalized to the range of 0 to 1 across different
metrics using Equation 2. In doing this, we reduce the weight
of the metrics that barely fluctuate (e.g., two instances keep the
CPU utilization rate around 80%), since these metrics are less
informative in representing the characteristics of instances. In
contrast, if two metrics are simultaneously changing following
the same trend, they are more likely to indicate instances
performing the same functionalities.
Clustering Algorithm. We then apply a clustering algorithm
in each chunk based on the metric-based distances to produce
more fine-grained clusters (i.e., functional clusters). Specif-
ically, we choose the hierarchical agglomerative clustering
(HAC) [31] algorithm because it allows us to adjust the
number of produced clusters via setting a distance threshold,
i.e., θHAC . The clustering algorithm starts by considering each
instance as a single cluster and then iteratively merges the
closest pairs of clusters until a user-defined threshold θHAC

is reached. In this process, we use complete linkage [32] to
find the closest pair of clusters, i.e., the distance between two
clusters is defined as the maximum DTW distance between
any pair of instances in the two clusters.

While HAC requires the computation of distances between
instances in a pairwise manner, it is still efficient since HAC
is applied separately in each chunk. Recall that chunks are
produced by the trace-based partitioning step, and each chunk
only contains tens of instances because of the locality of
communication patterns (as shown in §II-B1). Therefore, the
computation within each small chunk can significantly reduce
the computation cost, making our framework scalable to a
large number of instances in cloud systems.

IV. EVALUATION

We evaluate Prism by answering the following research
questions (RQs):
• RQ1: How effective is Prism in clustering instances having

similar functionalities?
• RQ2: How does each component contribute to the overall

performance of Prism?
• RQ3: What is the parameter sensitivity of Prism?
• RQ4: What is the efficiency of Prism?



TABLE I
DATASET STATISTICS

Datasets # Functionalities # Instances # Traces # Metrics

Dataset A 292 2,035 100.2 M 7.25 M

Dataset B 105 1,027 121.6 M 3.71 M

Total 397 3,062 212.6 M 10.96 M

A. Experimental Setup

Dataset. We evaluate Prism using two datasets collected from
the production environment of Huawei Cloud. To evaluate
the generalizability of Prism, the two datasets (A and B) are
collected from two different geographically isolated regions
with different numbers of users. The detailed statistics of
the two datasets are listed in Table I. These datasets only
include instances that are subscribed by internal customers,
where we are able to manually inspect their functionalities
by collaborating with corresponding teams. We select the
instances running on our production environment that are most
frequently invoked according to their communication traces.
Then, we reach the owners of these instances to figure out
the concrete functionalities these instances support, and we
finally obtain 3,062 labeled instances. Although we are unable
to fully cover all instances within the Huawei Cloud due to
the manual effort required, our datasets encompass a diverse
range of functionalities (397 types in total), such as databases,
disaggregated memory, authentication servers, search engines,
and machine learning algorithms. Such diversity would help
evaluate whether a clustering algorithm can generalize to
different functionalities. Additionally, these functionalities can
belong to different applications. For example, while vari-
ous applications may each have their own databases, these
database functionalities are distinguished from one another in
our datasets since they are utilized by distinct applications
that serve diverse workloads (e.g., databases of an online
shopping application and a face recognition application). For
the monitoring data, traces are extracted from the network
packet transmission records, while metrics are collected at
five-minute intervals. Given the extensive usage and frequent
communication of instances, we ultimately collect hundreds
of millions of traces. In terms of metrics, the total number of
points is 10.96 million for all instances. We have made our
datasets publicly available in our GitHub repository. However,
due to confidentiality concerns, the actual functionality names
have been anonymized and are represented as “cluster ID”.
Evaluation Metrics. We use the metrics homogeneity, com-
pleteness and V-measure to evaluate the effectiveness of Prism
in grouping the instances within the same functional cluster.
These metrics have been widely adopted in evaluating the
quality of clustering results in previous studies. Homogeneity
measures the proportion of instances in the same cluster that
share the same ground truth labels. Completeness, on the other
hand, measures the proportion of instances with the same
ground truth labels that are grouped into a single predicted
cluster. V-measure is a harmonic mean of homogeneity and
completeness, providing an overall indicator for clustering per-

TABLE II
EFFECTIVENESS OF FUNCTIONAL CLUSTER DISCOVERY

Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.

OSImage 0.238 0.894 0.376 0.258 0.889 0.400
CloudCluster 0.346 0.748 0.473 0.369 0.753 0.495

ROCKA 0.831 0.882 0.856 0.875 0.900 0.887
OmniCluster 0.932 0.862 0.896 0.944 0.877 0.909

Prism 0.976 0.916 0.945 0.979 0.922 0.950

formance considering the trade-off between these two metrics.
Competitors. We select the competitors from recent studies:
• OSImage is a basic baseline that uses the name of the oper-

ating system (OS) image to differentiate between instances.
Cloud providers offer various pre-installed OS images to
cater to diverse customer needs. For example, an OS image
named deeplearning-pytorch-2.0 implies that the instance is
designed for executing deep learning applications.

• CloudCluster [19] clusters instances based on their pairwise
traffic matrix in cloud projects to determine the functional
structure of the cloud service. It normalizes each row of
the traffic matrix by feature scaling, then reduces its dimen-
sionality through low-rank approximation. Finally, HCA is
employed to group all instances.

• ROCKA [33] aims to cluster instances by using their moni-
toring metrics. ROCKA first normalizes the metrics to elimi-
nate amplitude differences. It then uses shape-based distance
(SBD) as a distance measure, which is robust to phase shift
and efficient for high-dimensional time series data. Then,
clusters are created based on DBSCAN algorithm.

• OmniCluster [34] clusters instances based on multivariate
metrics of each instance. It employs a one-dimensional
convolutional autoencoder (1D-CAE) to extract the low-
dimensional features of all metrics. These features are
selected based on their periodicity and redundancy. Finally,
it uses HAC to divide all instances into different clusters.

B. RQ1: Effectiveness in functional cluster Discovery
In this RQ, we evaluate the accuracy of the functional

clusters discovered by Prism in comparison with state-of-the-
art baseline methods. To achieve this, we apply Prism and
baseline methods to cluster instances in the dataset of A and
B. We present the results of our experiments in terms of
homogeneity (Homo.), completeness (Comp.), and v-measure
(V Meas.) in Table IV-A, where we highlight the best V Meas.
with boldface and the second-best ones with underline.

It can be observed that Prism outperforms three state-of-
the-art baseline methods, namely CloudCluster, ROCKA, and
OmniCluster, by a significant margin, achieving V-measures
of 0.945 and 0.950 on datasets A and B, respectively. These
results indicate that Prism can achieve the best balance be-
tween homogeneity and completeness. This can be attributed
to the fact that Prism effectively integrates communication and
resource usage patterns to discover functional clusters. Unlike
Prism, baseline methods typically focus on either trace or met-
ric data, leading to worser performance. Specifically, OSImage
exhibits low homogeneity but high completeness, as using only
image names to separate instances can overly group instances



TABLE III
CONTRIBUTION OF DIFFERENT COMPONENTS IN PRISM

Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.

Prism 0.976 0.916 0.945 0.979 0.922 0.950
Prism w/o Metrics 0.462 0.920 0.615 0.463 0.949 0.622
Prism w/o Traces 0.949 0.869 0.907 0.915 0.893 0.904

with different functionalities that share the same images. While
CloudCluster outperforms OSImage in v-measure, it falls short
of other metric-using baseline methods, suggesting that metric
similarities are more effective in distinguishing functionalities
than communication trace similarities.

Answer to RQ1: Prism outperforms all state-of-the-art
comparative methods in revealing the functional clusters
across two different datasets, achieving a v-measure of 0.945
and 0.950 in dataset A and B.

C. RQ2: Contribution of Each Component

In this RQ, we evaluate each component’s contribution to
Prism’s overall performance. We created two Prism variants
and compared them with the original approach across datasets
A and B. The first, Prism w/o metrics, eliminates metric-
based clustering, relying solely on communication destination
similarity. The second, Prism w/o traces, omits trace-based
partitioning, directly applying the HAC algorithm to cluster
instances based on resource usage patterns.

We present the comparison results in Table IV-B, from
which we make the following observations. (1) Removing
either of the two components can adversely affect the per-
formance of Prism, underscoring the necessity of integrating
both communication and resource usage patterns. (2) The
V-measure of Prism w/o metrics is significantly lower than
that of Prism and Prism w/o traces, primarily due to its low
homogeneity. This suggests that the trace-based partitioning
step over-clusters many instances that should be separated. The
communication pattern alone is not distinctive enough because
instances having different functionalities should still commu-
nicate with some common instances, such as network gateway
and proxy services (as illustrated in Fig. 2-(a)). Nonetheless,
the use of solely communication patterns achieves the best
completeness score, implying that it barely separates clusters
that should be grouped. (3) Prism w/o traces has the lowest
completeness score, indicating that it can overly split clus-
ters apart, but it has a considerably high homogeneity. This
observation implies that Prism harnesses the benefits of both
performance metrics and communication traces, achieving the
optimal balance between homogeneity and completeness.

Answer to RQ2: The variants, Prism w/o metrics and
Prism w/o traces, each sacrifice either homogeneity or com-
pleteness. Yet, Prism effectively combines communication
traces and metric data, yielding the highest v-measure, i.e.,
a balanced performance in completeness and homogeneity.

D. RQ3: Parameter Sensitivity

In the design of Prism, we identify the following two
parameters that are manually selected and potentially affect the
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Fig. 4. Parameter Sensitivity of Prism

performance of Prism. For clarity, we present the evaluation
results in Dataset B; similar results are obtained in dataset A.

1) LSH threshold (θLSH )

In §III-B, we utilize LSH algorithm to perform a search for
similar neighbors during the trace-based partitioning step. The
LSH algorithm groups similar items together into the same
bucket with high probability, but it cannot guarantee that all
items in the same bucket are actually similar; therefore, θLSH

is utilized to filter dissimilar items within each bucket.
We varied the value of θLSH from 0 to 1 with a step

size of 0.1 and evaluated the performance of Prism. The
results, shown in Fig. 4(a), indicate that the V-measure remains
stable with only a slight decrease as θLSH increases, which is
primarily due to the decrease in completeness. This is because
the LSH algorithm has already grouped similar items together
into different buckets. Furthermore, since the communication
patterns of most instances are distinct from one another, as
depicted in Fig. 2-(a), there are only a small number of
dissimilar items in the same bucket. As a result, adjusting
θLSH does not significantly affect the clustering results.

2) HAC threshold (θHAC)

In §III-C, HAC is used for clustering instances within each
chunk, where the parameter θHAC controls the granularity
of clustering: a smaller value of results in more fine-grained
clusters, while a larger value results in fewer, coarser clusters.

We enumerated the value of θHAC from 0 to 1 with a step
size of 0.1 and evaluated the performance of Prism. The results
are shown in Fig. 4(b). We observed that increasing θHAC can
increase completeness and decrease the homogeneity. This is
because larger clusters are generated when θHAC is larger.
The best v-measure is achieved when θHAC is around 0.4.
Subsequently, there is a slight decrease in homogeneity, while
the v-measure remained stable. This decline in homogeneity is
due to the inclusion of more dissimilar instances in a cluster,
thereby reducing its homogeneity. Nevertheless, the preceding
trace-based partitioning step groups similar instances together,
resulting in a limited number of dissimilar instances. Hence,
the overall performance is not significantly affected.

Answer to RQ3: Prism is not significantly sensitive to the
parameters θLSH and θHAC . This is because the trace-based
partitioning step already groups similar instances together
and separates dissimilar instances based on their communi-
cation patterns. Thus, adjusting these two parameters only
has a minor effect on the clustering results.



TABLE IV
EFFICIENCY COMPARISON WITH INCREASING SCALES OF INSTANCES

Methods # Instances
1,000 5,000 10,000 50,000 100,000

CloudCluster 0.9 23.87 78.65 1768.7 5585.7
ROCKA 80.7 1981.8 7850.3 - -

OmniCluster 31.7 264.6 1048.6 26531.8 -

Prism w/o Metrics 3.9 19.1 40.2 195.1 392.4
Prism w/o Traces 80.3 2066.1 8232.3 - -

Prism 18.2 89.4 183.9 929.2 1912.7

E. RQ4: Efficiency of Prism
In this section, we assess the efficiency of Prism in the

context of large-scale cloud systems with millions of instances
that are frequently created, deleted or updated. To this end,
we apply them to 1,000 / 5,000 / 10,000 / 50,000 / 100,000
instances and record the time needed (in seconds) to complete
the clustering process.

Table IV-E presents the results, from which we can make the
following observations: (1) ROCKA, OmniCluster, and Prism
w/o Traces require increasingly more time as the number of
instances increases, and they cannot complete the clustering
process within a reasonable time when clustering 100,000
instances. This is mainly because these methods require pair-
wise similarity computation based on instance metrics, result-
ing in a quadratic growth in time complexity as the number
of instances increases. OmniCluster mitigates this issue by
reducing the dimensionality of metrics, requiring less time than
the other two methods. (2) CloudCluster and Prism w/o Met-
rics are more efficient than other baseline methods. Prism w/o
Metrics is more efficient because we optimize efficiency using
pair-wise comparison with LSH and MinHash, as described
in §III-B. (3) Prism is less efficient than Prism w/o Metrics
since it requires an additional metric-based clustering step. In
addition, when the number of instances is fewer than 10,000,
CloudCluster outperforms Prism because the time required by
Prism to build the LSH index is dominant. However, as the
number of instances increases to 100,000, Prism’s efficiency
becomes superior to other baselines, being four times faster
than CloudCluster. This is attributed to the coarse-to-fine
clustering process, which limits pairwise distance computation
within small chunks. Therefore, the time cost of Prism only
increases linearly with the instance numbers.

Answer to RQ4: Compared with state-of-the-art solutions,
Prism is the most efficient solution when processing a large
number of instances (e.g., 100,000). Moreover, thanks to
the coarse-to-fine strategy of Prism, its time cost increases
linearly with an increasing number of instances, making it
scalable for handling massive instances in cloud systems.

V. INDUSTRIAL EXPERIENCE

In this section, we share our experience in applying Prism to
a real-world cloud system (i.e., Huawei Cloud), which aims
to demonstrate the practical usefulness of Prism. Generally,
customers usually subscribe instances from Huawei Cloud in
a batch manner, e.g., thousands of instances. These customers
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Fig. 5. Case I: vulnerable deployment identification

can then concentrate on the development and deployment of
a variety of services across these instances, while the cloud
providers handle the often tedious tasks of maintenance and
operation to ensure system reliability. Due to privacy concerns,
on-site engineers from Huawei Cloud can only rely on limited
runtime information of these instances (e.g., network packet
drop rate) to monitor their health states [8], [10], [35]. How-
ever, without knowing how customers’ applications are orga-
nized in these instances, we observe that some potential threats
in the deployment or underlining errors may be missed, which
may later cause service interruptions, consequently impacting
the overall availability of the deployed applications [19]. To
address this problem, in Huawei Cloud, we adopt Prism to
reveal functional clusters in the massive instances hosted by
Huawei Cloud. These functional clusters provide additional in-
formation regarding the structure of service deployment across
the instances, thus enabling us to conduct more comprehensive
and fine-grained monitoring of the cloud system. We present
two primary usage scenarios of functional clusters within
Huawei Cloud: vulnerable deployment identification and latent
issue discovery.

A. Vulnerable Deployment Identification

Functional clusters can help cloud providers identify in-
stances with vulnerable deployments. Specifically, a vulnerable
deployment refers to a scenario where all instances, having
the same functionalities, are deployed on the same physi-
cal machines. In such case, once a failure happens on this
physical machine (e.g., disk failure [36]), the entire function-
ality can be interrupted. In contrast, if these instances were
distributed across different physical machines, only a subset
of the instances would be affected in the event of a failure,
thereby preventing a complete shutdown of the functionality.
However, due to the abstraction of physical resources into
instances, customers often deploy their applications within
these instances without understanding how these instances are
distributed across actual physical machines. On the other hand,
cloud vendors possess knowledge of the mapping between
instances and physical machines; yet, they are often unaware
of the organization of functionalities across these instances
due to privacy concerns. Given the vast number of instances in
a cloud system, manually identifying vulnerable deployments
poses a significant challenge for on-site engineers.

To fill in this gap, we apply Prism to identify functional
clusters to help detect potentially vulnerable deployments.
Fig. 5 provides a concrete example. The left-hand side presents
a black-box view of instance deployment from a cloud ven-



Downloading file "xxx.txt"
interrupted, retrying in 30s.

1.0

0.8

0.6

0.4

0.2

0.0

1.0
0.8
0.6
0.4
0.2
0.0

Connection to remote server lost
during transmitting dataset "xxx".

1.0
0.8
0.6
0.4
0.2
0.0

Fig. 6. Case II: latent issue discovery

dor’s perspective, where only the information about which
instances are deployed on which physical machines is known.
In contrast, the right-hand side displays instances with func-
tional clusters. With this knowledge, we can identify three
functionalities: a functionality including A and B (marked as
yellow), a functionality including D and E (marked as red),
and a functionality including C, F, and G (marked as green).
The deployment of the yellow functionality is potentially
vulnerable because both A and B are deployed on physical
machine P1. In contrast, the other two functionalities are
more reliable since their instances are deployed across two
different physical machines, making them resilient to the
failure of either machine. It is worth noting that although
Prism can hardly pinpoint what specific functionality of an
instance serves, it can identify the instance group having the
same functionalities, which facilitates automatic vulnerable
deployment identification without violating privacy policies.

We have applied Prism in Huawei Cloud to discover func-
tional clusters for around 3,000 internal instances and identi-
fied eight cloud services with vulnerable deployments. We then
contacted the corresponding teams, confirmed the existence
of the vulnerable deployments, and assisted in migrating the
instances across different physical machines for improved
resilience. In the future, our goal is to broaden the adoption
of Prism to benefit a wider group of users and help enhance
the reliability of their application deployment.

B. Latent Issue Discovery

The second typical use case of Prism in Huawei Cloud is
to identify latent network issues that may not be discovered
by traditional monitoring methods. Modern cloud providers
have been equipped with various monitoring tools to ensure
the quality of their network services (e.g., flow logging of
AWS [24]). It is essential for such monitoring tools to compre-
hensively discover underlining problems in the cloud systems
that can affect user experience, but without firing too many
false alarms to distract the on-site engineers.

One crucial type of network monitoring is to monitor the
packet loss of each instance. Packet loss, which denotes
network packets that are accidentally dropped, can usually
occur in any instance of a cloud system. However, they may
not necessarily indicate a problem, as these errors could be
caused by transient network congestion and may not affect
users’ experience. Considering the vast number of instances
in a large-scale cloud system, a significant number of packets
could be lost every minute. This presents a challenge for cloud

vendors in converting this fragmented packet loss data into
actionable alarms for on-site engineers.

To address this problem, we resort to the aggregation of
packet loss data from a selected group of instances, using an
appropriate granular approach to identify potential problems.
The underlying assumption here is that simultaneous packet
losses occurring within a group of instances are more likely
to impact user applications. For instance, if all instances within
a region experience packet loss within a short time frame, it
strongly suggests a regional network issue. However, one large
region can contain millions of instances, and consequently,
grouping by a region might fail to reveal local issues for a
particular application. Another possible solution is to utilize
the metadata (e.g., the TenantID of the customer) to group
instances. Nonetheless, there could still be tens of thousands
of instances associated with the same identifiers [19]. For
example, all instances subscribed to by the same enterprise
customer would share the same identifier.

Prism enables a more effective approach, which is to ag-
gregate lost packets in the granularity of the (approximated)
functional clusters, which can reveal latent issues that may not
be visible at neither a coarser level (e.g., regional level) nor a
finer level (e.g., instance level). Fig. 6 shows the changes in
the number of lost packets (normalized) calculated at either the
region grain (left-hand side) or functionality grain (right-hand
side). We can observe that while the numbers of packet loss
barely change for the whole region, some functionalities (i.e.,
Cluster-1 and Cluster-2) experience sudden increases in packet
loss. This indicates that there may be latent issues affecting
the performance of those specific functionalities, which are
unnoticed if monitored at the region level. We then contact the
corresponding teams and confirm that Cluster-1 and Cluster-
2 correspond to machine learning and storage functionalities,
respectively. We then validate these latent issues, and both
functionalities experience interruption due to unstable network
states, as evidenced in their log messages shown in Fig. 6.
This highlights the potential of Prism in facilitating identifying
issues that customers are experiencing without accessing their
private data, which allows cloud vendors to provide more
comprehensive monitoring to enhance the reliability of the
cloud systems.

Enhanced Cloud Monitoring Based on Prism. To summa-
rize, these two use cases demonstrate that functional clusters
can be utilized with existing monitoring tools and enable
identifying vulnerable deployment and discovering latent is-
sues automatically. Prism plays a crucial role to provide
comprehensive and precise functional clusters for large-scale
instances. With the significant growth of modern cloud sys-
tems, instances experience frequent dynamic changes, includ-
ing creation, deletion, and migration. In this context, Prism can
be utilized to efficiently capture relations between instances.
Unlike using pre-defined and rule-based monitoring [35], [37],
Prism is adaptive to the frequent evolution of cloud appli-
cations. By continuously monitoring metrics like packet loss
and the distribution of instance deployments, the monitoring
system can effectively detect anomalies, such as sudden spikes



in packet loss or scenarios indicating vulnerable deployments.
This enables prompt alerts to the on-site engineers of relevant
teams, resulting in shorter response time and more efficient
issue resolution. Overall, the effectiveness and efficiency of
Prism significantly contribute to improving the overall moni-
toring and management of instances in modern cloud systems.

VI. THREATS TO VALIDITY

External Validity. The primary external threat of this study
is the investigated object. The datasets are collected from
Huawei Cloud, as there are no publicly available datasets that
include both instance data and corresponding functionality
labels. However, Huawei Cloud is a world-leading cloud
provider with a vast scale. The data collected from the
production environment records real behaviors of instances
and covers a broad range of functionalities from two large
regions as detailed in §IV-A. Therefore, the Huawei Cloud
evaluation is representative and convincing. The data used by
Prism, which includes traces and metrics, is typically collected
by modern cloud vendors like AWS [20] and GCP [22]. This
suggests that our solution could be applied to similar cloud
systems, potentially benefiting cloud customers globally.

Internal Validity. The primary internal factors that could
potentially compromise validity are implementation and pa-
rameter setting. To address the implementation threat, we
closely followed the original papers for baseline approaches
that lacked open-sourced code and re-implemented them ac-
cordingly. To minimize this threat further, we utilized several
mature libraries (e.g., scikit-learn) for implementing the core
algorithms. Moreover, both our proposed methods and the
baseline methods were subject to rigorous peer code review. To
mitigate the parameter setting threat, we fine-tuned the base-
line methods utilizing a grid-search approach, subsequently
selecting the most optimal results.

VII. RELATED WORK

A. Instance Clustering

Communication traces are usually modeled as a communi-
cation graph for clustering instances. Xu et al [14] perform
network-aware clustering for end hosts with the same net-
work prefixes by using bipartite communication graphs. [11]
[12] [13] attempt to mine the pattern of instance-to-instance
communication, then detect abnormal traces to safeguard
the instances. Pang et al. [19] propose CloudCluster, which
uses a novel combination of feature scaling, dimensionality
reduction, and hierarchical clustering to cluster a large scale
of instances. Another line of work utilizes various technologies
to model multivariate metric data of instances. For example,
Kane et al. [38] employ Principal Component Analysis (PCA)
to transform multivarite metric data to univariate time series
before clustering. The most recent work, ROCKA [33] adopts
shape-based distance (SBD) [39] as a robust distance mea-
surement for clustering. OmniCluster [34] adopts hierarchical
agglomerative clustering to cluster instances represented by
low-dimension representations. Contrary to previous studies,

Prism effectively combines communication traces and mul-
tivariate metric data, surpassing state-of-the-art solutions by
utilizing both data types, as shown in Section IV.

B. Reliability of Cloud Systems

Extensive efforts have been made to examine and un-
derstand the important factors contributing to cloud system
reliability. For example, Chen et al. [7] extensively studied
large-scale public cloud incidents, analyzing disruptions and
failures to pinpoint reliability issues. Similarly, Huang et al.
[40] explored the effects of gray failures in cloud systems. In
addition, other studies [9], [36], [41], [42] reviewed public
or internal postmortem reports and summarized the causes
of outages in cloud systems. These studies underscore the
need for enhanced understanding and observability of interde-
pendent cloud system components. Furthermore, researchers
have explored automated solutions for timely incident detec-
tion [35], [37], [43], [44] and failure mitigation [6], [10],
[45]–[47] in cloud systems. Despite the promising results of
these solutions in improving cloud system reliability, most [6],
[44], [47] rely on well-abstracted incident descriptions and
clear system topologies, often unavailable or incomplete to
cloud providers [10]. In contrast, Prism’s functional clusters
can supplement these methods and provide insights to enhance
these tasks, as shown in §V.

VIII. CONCLUSION

This paper presents an approach to enhance the observability
of cloud systems by inferring functional clusters of instances.
To achieve this, we conduct a pilot study based on the real-
world datasets collected in Huawei Cloud, indicating that
communication patterns and resource usage patterns are two
essential indicators for revealing functional clusters. Motivated
by our findings, we propose a non-intrusive, coarse-to-fine
clustering method, Prism, which effectively integrates both
communication and resource usage patterns. Experiments on
two industrial datasets are conducted to evaluate Prism. Our
results show that Prism outperforms state-of-the-art solutions
with a v-measure of 0.95; and Prism can efficiently process
massive instances. Furthermore, we share our experiences in
applying Prism in Huawei Cloud. Two cases, i.e., vulnerable
deployment identification and latent issue discovery, demon-
strate the usefulness of Prism in improving the reliability of
Huawei Cloud.
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