

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems

Junjie Huang¹, Jinyang Liu¹, Zhuangbin Chen², Zhihan Jiang¹, Yichen Li¹, Jiazhen Gu¹, Cong Feng³, Zengyin Yang³, Yongqiang Yang³, Michael R. Lyu¹

¹The Chinese University of Hong Kong

²Sun-yat Sen University

³Huawei Cloud

香港中文大學 The Chinese University of Hong Kong

Ensuring reliability of cloud systems is crucial

Microsoft admits 'power issue' downed Azure services in West Europe

Work ongoing Tech / Big Tech

 Paul Kunert

Ride-hailing giant Didi Chuxing apologises for widespread service outage in China

• Some of the issues encountered by drivers and users include failure of the app's navigation and ride-hailing functions

• Didi, which remains the top player in China's nearly-saturated ride-hailing market, says the problems were caused by a 'system failure'

Alibaba Cloud suffers second service outage in a month

Reuters

November 28, 2023 3:22 PM GMT+8 · Updated 14 days ago

User dissatisfaction

Huge revenue loss

What is incident?

- Unplanned service interruption or performance degradation
 - Can be referred to as *failure*
 - Examples:
 - Bad HTTP requests
 - Power outages
 - User-reported errors

Incident management process

Real-time response

• Goal: mitigate incidents as quickly as possible

Postmortem analysis

• Goal: analyze incident tickets to summarize experience

Identifying recurring issues Incident Incident Incident **Postmortem** Reporting Mitigation Analysis Triage Vulnerable components Incident Postmortem Ticket Report **Incident** Title Service **Diagnosis History Final Root Cause** Faulty Components **Temporary Root Cause** Fault Patterns Revealing incident trends Occurring Time Severity Level **Lessons Learned First Responsible Team Mitigation Actions** 5

()赴

Understanding root causes

Postmortem analysis

Incident Management

Cloud

- Goal: analyze incident tickets to summarize experience
- It is important in improving cloud reliability

Fault Pattern Profiling in CloudA Categorize faults occurred in each incident into different types

• E.g., CPU overload, power outage, SSD failure, etc. → Fault Patterns

Fault pattern profiling for postmortem analysis

Symptom: One master node ... Root Cause: CPU overheated and shut down ... Mitigation Action: Replace CPU

Fault Pattern: Clusters and Hosts → Physical Machine → Equipment and Components → CPU Failure

An example of incident tickets

Fault Pattern Taxonomy

- Hierarchy: 5 levels and 334 fault patterns in total
- Description: A fault pattern contains symptoms, fault tolerance measures, etc. ٠

An example of incident tickets

Fault Pattern Taxonomy

Fault pattern profiling for postmortem analysis

- Classifying faults occurred in the incidents according to tickets
- E.g., CPU overload, power outage, SSD failure, etc. → Fault Patterns

Fault Pattern Profiling

Manually fault pattern profiling is challenging

• Large-scale:

- Focusing on S2/S3 level incidents
- Less efforts for S4/S5 level
- But they are common and numerous

• Expensive:

- Time-consuming
- Labor-intensive
- Domain knowledge

Inconsistent Profiling:

- Variations in expert knowledge
- Complex fault pattern taxonomy

We need an automated approach!

Task Definition:

- Input:
 - Textual incident tickets
 - Fault pattern taxonomy
- Output:
 - Fault pattern labels

Title : Unexpect restart of a master	node Status: Mitigated				
Symptom: One master node of the MRS clusterID: 20210121001of customerA restarted, taking 8 minutes to start.Severity:S3					
Root Cause: CPU overheated and shut down It is necessary to check if the wind guide cover or CPU cooler is installed correctly. If it is installed correctly, the CPU needs to be replacedMitigation Action: Replace CPU	Region: Beijing Service:OS Platform Fault Pattern: Clusters and Hosts → Physical Machine → Equipment and Components → CPU Failure				
	J				
Level 0 Root	Fault Pattern				
Level 0 Root Level I Node /	Fault Pattern CPU Overload				
Level 0 Level I Level II Level II System System	Fault Pattern CPU Overload Instance-level examples: 1. Single CPU utilization > 90%. 2. All CPU utilizations > 60%. 3. System bug-caused CPU surge.				
Level 0 Level I Level II Level II Level III Root Customer Node Operating System Resource	Fault Pattern CPU Overload Instance-level examples: 1. Single CPU utilization > 90%. 2. All CPU utilizations > 60%. 3. System bug-caused CPU surge. Fault tolerance measures: 1. Raising alerts.				

- Challenge 1: Complex fault patterns
 - 5 levels and 334 fault patterns in total
 - Hierarchical and textual information
- Challenge 2: Insufficient training data
 - We only have 1463 annotated tickets

Augmented Examples and Contrastive Learning

Goal: Encode incident context into vectors Customer Node Customer Node Contrastive loss

Incident context: Incident ticket title: [Title]. Symptoms of incidents: [Symptoms]. Identified root cause: [Temporary Root Cause]. Mitigation actions: [Mitigation Actions]

Incident Encoder

 Incident encoder based on MacBERT¹

 $\mathbf{X} = MacBERT(x)$

$$\boldsymbol{x} = \boldsymbol{X}_{[CLS]}$$

FaultProfIT: a hierarchical contrastive learning method

12

FaultProfIT: a hierarchical contrastive learning method

Fault Pattern Encoder

- Goal: Encode each fault pattern *f_i* into a vector
- Embed fault patterns into vectors
 - $f_i = LabelEmbedding(f_i) + DescriptionEmbedding(f_i)$
- Apply graph encoder to encode DAG(F, E)

 $H = Graphormer\left([f_1, \dots f_i, \dots f_k]\right)$

• Hierarchy-aware embedding $f_i \rightarrow H_i$

Original Context

Title:	Unexpected			restart		0	of a		master		de	in
USEast.	Syr	nptom	of	•••	Root	: Ca	ause	e:	CPU			
overhea	ted	and	shut	t d	lown.		If	it	is	ins	ta]	llec
correctly,		the	CPU	ne	eds	to	be	re	plac	ed		

Augmented Context

Title: Unexpected restart node. Symptom ... Root Cause: CPU overheated and shut down. ... CPU be replaced ...

Hierarchy-guided data augmentation

- Idea: Remove unimportant words in incident context so that the ticket keeps the same labels.
- Weight score of x_i to be a keyword of f_j
 - $A = scale_dot_attention(\mathbf{X}, \mathbf{H}) \qquad P_{ij} = gumbel_softmax(A_{i1}, A_{i2}, \dots, A_{ik})_j$
- Embedding of the augmented

 $\hat{x} = \{x_i \text{ if } P_i > \lambda\}$ $\widehat{\mathbf{X}} = \text{MacBERT}(\hat{x})$ $\widehat{\mathbf{x}} = \widehat{\mathbf{X}}_{[\text{CLS}]}$

Original Context Loss Function: Title: Unexpected restart of a master node in **Multi-label Classification** USEast. Symptom of ... Root Cause: CPU $Loss = Loss^{cls} + Loss^{cls} + \alpha Loss^{contra}$ • Final loss overheated and shut down. ... If it is installed Clusters and Hosts → Physical Machine → correctly, the CPU needs to be replaced ... Equipment and Components CPU Failure Multi-label classification loss: $Loss^{cls} = -\sum_{i=1}^{N} \sum_{j=1}^{k} \gamma \dot{f}_{j}^{(i)} \log{(p_{j}^{(i)})} + (1 - f_{j}^{(i)}) \log{(1 - p_{j}^{(i)})}$ **Contrastive Learning** Contrastive loss: **Multi-label Classification** Title: Unexpected restart node. Symptom ... Root $Loss^{contra} = -\sum_{i=1}^{2N} \log \frac{e^{\operatorname{cosine}(\mathbf{x}^{(i)}, \hat{\mathbf{x}}^{(i)})/\tau}}{\sum_{i=1, i \neq i}^{2N} e^{\operatorname{cosine}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})/\tau}},$ Cause: CPU overheated and shut down. ... CPU be Clusters and Hosts Physical Machine Equipment and Components CPU Failure replaced ... **Augmented Context**

Inference Stage

- Constructing incident context
- Encode with the trained incident encoder for fault pattern profiling

Incident context: Incident ticket title: [Title]. Symptoms of incidents: [Symptoms]. Identified root cause: [Temporary Root Cause]. Mitigation actions: [Mitigation Actions]

Industrial Dataset

- 6 years of incident tickets
- 22,560 incidents in total
- 1,463 incidents with annotated labels
- Train: dev: test = 8:1:1

Core services

- Elastic Computing Service (ECS)
- Virtual Private Cloud (VPC)
- Cloud Container Engine (CCE)
- OBS, DCS...

Title : Unexpect restart of a maste	er node Status : Mitigated
Symptom : One master node of the MRS of customerA restarted, taking 8 minute	S cluster ID: 20210121001 es to start. Severity:S3
Root Cause : CPU overheated and shut down It is necessary to check	Region : Beijing Service :OS Platform
if the wind guide cover or CPU cooler is installed correctly. If it is installed	Fault Pattern: Clusters and Hosts → Physical
correctly, the CPU needs to be replaced	Machine → Equipment and Components → CPU Failure
Mitigation Action: Replace CPU	

An example of incident tickets

Precision Recall F1-score

- FaultProfIT achieves a high degree of accuracy!
- Hierarchical contrastive learning is effective!

Method	Precision	Recall	F1-score
Dense Retriever	48.5	61.1	54.1
MacBERT	58.5	61.9	60.1
ChatGLM	60.0	65.2	62.5
HiAGM	72.1	78.2	75.1
FaultProfIT	76.6	80.1	78.3

2			
FaultProfIT	76.6	80.1	78.3
<i>-r.p.</i> GCN	71.4	74.2	72.8
<i>-r.p.</i> GAT	71.9	74.8	73.3
-w.o. description embedding	72.8	75.1	74.0
<i>-w.o.</i> Graphormer	66.2	71.8	68.9
-w.o. contrastive loss	67.2	75.5	71.3
-w.o. augmented samples loss	53.4	64.4	58.4
-w.o. whole contrastive module	50.6	59.5	54.7

Method

Overall performance compared with baselines

[1] Karpukhin, et al. Dense Passage Retrieval for OpenDomain Question Answering. (EMNLP'20)
[2] Cui, et al. Revisiting Pre-Trained Models for Chinese Natural Language Processing. (EMNLP'20)
[3] Du, et al. GLM: General Language Model Pretraining with Autoregressive Blank Infilling. (ACL'22)
[4] Zhou, et al. Hierarchy-aware global model for hierarchical text classification. (ACL'20)

Ablation study on different components

Effects of severities and services

• Varying severities

- FaultProfIT performs better on less severe incidents.
- Reason: Severe incidents often have complex and extended contexts

• Varying services

- FaultProfIT performs better on incidents from infrastructure and computing services.
- Reason: Incidents involving servers and hardware have more explicit descriptions

- FaultProfIT has been successfully deployed in CloudA
 - 10000+ incidents from 30+ services have been analyzed
 - The efficiency and accuracy of fault pattern has been substantially improved
 - Being integrated as a profiling service for internal users

- FaultProfIT has been successfully deployed in Cloud A
 - 10000+ incidents from 30+ services have been analyzed
 - The efficiency and accuracy of fault pattern has been substantially improved
 - Being integrated as a profiling service for internal users

• An example of trend analysis for memory overload fault pattern

incidents

Conclusion

- Fault pattern profiling is important in incident postmortem
- We developed FaultProfIT for automatic profiling
 - Inject hierarchy information and mitigate data insufficiency problem
- FaultProfIT is effective in predicting fault patterns
- FaultProfIT has been successfully deployed in Cloud A

