
A Large-Scale Evaluation for Log Parsing Techniques: How Far
Are We?

Zhihan Jiang
The Chinese University of Hong Kong

Hong Kong, China
zhjiang@link.cuhk.edu.hk

Jinyang Liu
The Chinese University of Hong Kong

Hong Kong, China
jyliu@cse.cuhk.edu.hk

Junjie Huang
The Chinese University of Hong Kong

Hong Kong, China
junjayhuang@outlook.com

Yichen Li
The Chinese University of Hong Kong

Hong Kong, China
ycli21@cse.cuhk.edu.hk

Yintong Huo
The Chinese University of Hong Kong

Hong Kong, China
ythuo@cse.cuhk.edu.hk

Jiazhen Gu
The Chinese University of Hong Kong

Hong Kong, China
jiazhengu@cuhk.edu.hk

Zhuangbin Chen∗
Sun Yat-sen University

Zhuhai, China
chenzhb36@mail.sysu.edu.cn

Jieming Zhu
Huawei Noah’s Ark Lab

Shenzhen, China
jiemingzhu@ieee.org

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT
Log data have facilitated various tasks of software development
and maintenance, such as testing, debugging and diagnosing. Due
to the unstructured nature of logs, log parsing is typically required
to transform log messages into structured data for automated log
analysis. Given the abundance of log parsers that employ various
techniques, evaluating these tools to comprehend their character-
istics and performance becomes imperative. Loghub serves as a
commonly used dataset for benchmarking log parsers, but it suf-
fers from limited scale and representativeness, posing significant
challenges for studies to comprehensively evaluate existing log
parsers or develop new methods. This limitation is particularly
pronounced when assessing these log parsers for production use.
To address these limitations, we provide a new collection of anno-
tated log datasets, denoted Loghub-2.0, which can better reflect the
characteristics of log data in real-world software systems. Loghub-
2.0 comprises 14 datasets with an average of 3.6 million log lines
in each dataset. Based on Loghub-2.0, we conduct a thorough re-
evaluation of 15 state-of-the-art log parsers in a more rigorous
and practical setting. Particularly, we introduce a new evaluation
metric to mitigate the sensitivity of existing metrics to imbalanced
data distributions. We are also the first to investigate the granu-
lar performance of log parsers on logs that represent rare system
events, offering in-depth details for software diagnosis. Accurately
parsing such logs is essential, yet it remains a challenge. We be-
lieve this work could shed light on the evaluation and design of log

∗Zhuangbin Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652123

parsers in practical settings, thereby facilitating their deployment
in production systems.

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
benchmark, empirical study, log parsing, log analysis
ACM Reference Format:
Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen
Gu, Zhuangbin Chen, Jieming Zhu, and Michael R. Lyu. 2024. A Large-Scale
Evaluation for Log Parsing Techniques: How Far Are We?. In Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3652123

1 INTRODUCTION
Log data records software runtime information, which is essential
for developers to understand the behaviors of software systems. The
rich information encapsulated within log data empowers develop-
ers and maintainers to test programs [4, 7, 8, 41], identify bugs [3, 6,
14, 59] and diagnose softwares [44–46]. In general, log messages are
semi-structured textual data, generated by logging statements writ-
ten by developers in the source code, e.g.,‘logger.info(“connected
to host: {}”, hostIp)’ in Java [29, 30, 33, 61]. At runtime, the vari-
able hostIpmay change in different executions, which can result in
a sequence of log messages like ‘connected to host: 172.16.254.1’

and ‘connected to host: 172.16.254.2’. Log parsing aims to con-
vert such semi-structured log messages into structured events,
which often serves as the first and foremost step to many log anal-
ysis tasks [18, 27, 32, 37, 60]. Specifically, log parsing extracts the
constant parts (i.e., log templates) and the changeable parts (i.e., log
parameters) from log messages. In the above example, the log tem-
plate is ‘connected to host: <*>’, and the log parameter indicates
the concrete IP address of the host, e.g.,‘172.16.254.1’.

Traditional approaches parse logs via matching raw log mes-
sages with their respective logging statements within the source

https://orcid.org/0009-0003-1988-6219
https://orcid.org/0000-0003-0037-1912
https://orcid.org/0009-0004-6962-5292
https://orcid.org/0009-0009-8370-644X
https://orcid.org/0009-0006-8798-5667
https://orcid.org/0000-0002-5831-9474
https://orcid.org/0000-0001-5158-6716
https://orcid.org/0000-0002-5666-8320
https://orcid.org/0000-0002-3666-5798
https://doi.org/10.1145/3650212.3652123
https://doi.org/10.1145/3650212.3652123

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

code [5, 47, 48, 50]. However, this approach is usually impracti-
cal since software source code may not always be available, e.g.,
commercial software. Thus, tremendous efforts have been devoted
to data-driven approaches [17, 21, 23, 58]. These parsers directly
process raw log messages without access to the source code.

Given the variety of log parsers employing different techniques,
it is crucial to evaluate these tools to comprehend their characteris-
tics and performance, providing guidance for production adoption
in industry. To this end, Zhu et al. [62] released Loghub, which con-
tains an extensive collection of log datasets generated by various
systems. However, Loghub only provides annotated parsing ground
truth for 2,000 lines of logs randomly sampled from each system, de-
noted as Loghub-2k, which has been extensively used to evaluate ex-
isting log parsers [25, 63] and develop new log parsers [9, 10, 31, 55].

Even though existing log parsers, such as Drain [17], Logram [9]
and LogPPT [28], have reported state-of-the-art results on the
Loghub-2k dataset, we observed that the parsing performance of
these tools is compromised when being integrated into real-world
software systems [15, 49]. Based on our experiences of deploying
automated log parsing in production, we have found that existing
parsers struggle to identify two types of log templates, i.e., infre-
quent log templates (those that occur infrequently) and parameter-
intensive log templates (those that involve many parameters). The
former usually includes logs with severe logging levels (e.g., error or
fatal), which typically demand more attention due to their potential
impact. The latter usually records the system runtime status and
associated values. These two types of log templates are crucial for
downstream analysis tasks, such as anomaly detection and debug-
ging. Therefore, it is essential to ensure parsing accuracy for such
log templates. However, the research results reported in previous
studies [25, 63] may not necessarily apply in practical production
settings, especially for these two types of log data.

This performance disparity primarily originates from three inher-
ent limitations in existing benchmark studies. First, the widely-used
Loghub-2k is of limited scale. It only encompasses 2,000 lines of log
messages in each dataset, whereas real-world data often consist of
millions of log lines [55, 56, 63]. As a result, the Loghub-2k may not
be able to sufficiently represent the complex characteristics of log
data obtained from production systems, particularly in terms of the
frequency and parameter count of log templates. Second, evaluation
metrics used in existing benchmarks (e.g., group accuracy, GA [63])
are often message-level (i.e., calculated based on the number of log
messages), thus may produce misleadingly high-accuracy results. It
is because the distribution of log templates’ occurrences is usually
highly imbalanced in production systems [25, 55]. The evaluation
results could be dominated by the majority classes of log templates
(i.e., those contain many log messages). Therefore, such metrics
may not be robust enough to datasets with diverse template distri-
butions. Third, existing studies often report the performance of log
parsers in processing the entire dataset. It is unclear how they per-
form when dealing with the above two types of log templates. The
lack of fine-grained evaluation can lead to a limited understanding
of how well a log parser handles these specific cases in practice.

To address these limitations, we propose a new log parsing bench-
mark tailored to evaluate log parsers in a more rigorous and prac-
tical setting. Specifically, (1) On top of the raw Loghub logs [20],
we build a new version of large-scale annotated log datasets for log

parsing, denoted as Loghub-2.0. The annotation is conducted adher-
ing to a rigorous framework, which can significantly reduce manual
efforts through log grouping and template matching. Loghub-2.0
aims to reflect the scale and distribution of log data observed in
real-world scenarios. In detail, Loghub-2.0 contains 14 datasets
from various software systems. Each dataset contains 3.6 million
lines of log messages on average. Each log line has been manually
annotated with its corresponding log template and parameter(s).
(2) We propose a more comprehensive benchmarking protocol to
evaluate existing log parsers. The protocol includes a new template-
level metric, i.e., F1-score of Group Accuracy (FGA), to mitigate the
sensitivity of the message-level metrics (e.g., GA) to imbalanced
data. Moreover, we make the first step to investigate the perfor-
mance of log parsers on log templates with different frequencies
and parameter counts, providing an essential reference regarding
how well they would perform in production environments. (3) We
conduct an extensive re-evaluation of 15 log parsers, including 13
statistic-based and 2 semantic-based log parsers, on Loghub-2.0
using the proposed benchmarking protocol. Our study provides
researchers and practitioners with a more practical perspective on
understanding the characteristics of these parsers. We summarize
the key findings from the evaluation as follows.

Key Findings. (1) Compared with Loghub-2k, Loghub-2.0 ex-
hibits more realistic data characteristics, especially in the context
of log template frequencies and parameter counts. (2) All existing
parsers demonstrate a significant degradation in performance on
Loghub-2.0 compared to the Loghub-2k, with a greater degree of
variance. This shows that our proposed datasets and benchmarking
protocol can reveal the performance of log parsers under more
complex and diverse conditions. (3) Achieving high overall per-
formance on the entire datasets does not necessarily guarantee
effective parsing of infrequent and parameter-intensive logs, which
often deserve more attention in system maintenance. Thus, a com-
prehensive evaluation should consider different types of logs to
ensure robust and reliable performance in practice. (4) 9 out of
15 parsers fail to process all the datasets in Loghub-2.0 within a
reasonable time frame, highlighting the importance of improving
parsing efficiency, especially for production deployment.

The main contributions of this paper are summarized as follows:
• We propose a new collection of large-scale datasets for evaluating
log parsing techniques, referred to as Loghub-2.0. This collection
comprises 14 datasets, each with an average of 3.6 million log
lines. The parsing labels of the log messages are manually anno-
tated through a rigorous annotation framework, which ensures
the efficiency and accuracy of the labeling process. This is a sig-
nificant extension of the existing widely-used Loghub-2k, which
contains only 2,000 lines of log messages per dataset.

• We propose a more comprehensive benchmarking protocol for
log parsers, which emphasizes assessing parsing accuracy on logs
with different characteristics. Moreover, a new template-level
metric, i.e., FGA, is proposed to address the sensitivity of existing
metrics to imbalanced data.

• We re-evaluate 15 state-of-the-art log parsers by our benchmark-
ing protocol and derive seven interesting findings, which could
shed light on the design and evaluation of log parsers in a more
practical setting. To benefit future research, we make datasets,
source code, and experimental results publicly available [1].

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

2 BACKGROUND AND MOTIVATION
In this section, we first briefly introduce existing log parsers in the
literature. Then, we talk about the observations that motivate us to
revisit existing log parsing studies.

2.1 Existing Log Parsing Techniques
Many log parsing approaches have been proposed in the literature,
mainly classified into the following four categories.
Frequency-based Parsing This type of methods [9, 43, 53, 54]
is founded on the intuition that tokens, which frequently occur
within a specific log dataset, generally represent the static elements
of those logs. Consequently, the extraction of frequent patterns
provides a straightforward approach for automated log parsing.
In detail, these log parsers first traverse the provided log dataset
to construct frequent itemsets. Subsequently, these itemsets are
utilized to derive the corresponding log template for log messages.
Similarity-based Parsing These log parsers [13, 16, 42, 51, 52]
conceptualize log parsing as clustering logs into distinct clusters
predicated on their similarity, and logs in each cluster share the
same log template. Various methods employ different clustering
algorithms (e.g., hierarchical clustering, density-based clustering)
and definitions of similarity. Following the clustering process, log
templates can be derived by extracting the common tokens from
the logs within each respective cluster.
Heuristics-based Parsing Another category of log parsers [11, 17,
24, 39, 40, 58] employs a diverse range of heuristic algorithms or
data structures, such as the longest common subsequence-based ap-
proach, parsing trees, evolutionary algorithm, among others. These
log parsers are designed to leverage the unique characteristics of log
data to distinguish the templates and parameters in log messages.
Semantic-based Parsing In recent years, numerous parsers [21,
28, 31, 35] have employed deep neural networks to understand
the semantic meaning of logs, thereby improving parsing accu-
racy. In detail, these log parsers employ supervised methodologies,
utilizing models such as bidirectional long short-term memory or
pre-trained language models to learn the semantic information of
log messages, thereby distinguishing between log templates and
parameters through the completion of classification tasks.

2.2 Motivation
Given the fruitful log parsing studies, comprehensively evaluating
existing log parsers is crucial in understanding their characteristics
and guiding the selection of appropriate methods in practice. Zhu
et al. [63] proposed the first benchmark of 13 log parsers by collect-
ing multiple log datasets from various types of systems, including
distributed systems, supercomputer systems, etc. Particularly, they
randomly sampled 2,000 logmessages for each dataset andmanually
annotated the template for these logs. This results in the widely-
used collection of log parsing datasets, i.e., Loghub-2k. Many new
log parsing approaches [9, 28, 55] also evaluate their performance
on Loghub-2k and demonstrate promising results.

Despite the advantages of the dataset, we still observe some
inherent limitations associated with it. First, a recent study [25] has
pinpointed multiple errors in the annotated templates, which could
potentially impact the assessment of log parsers. Therefore, they
proposed several heuristic rules, such as regular expressions, to fix

the incorrect templates in Loghub-2k. Second, we find that these log
parsers demonstrate compromised effectiveness and efficiency in
production deployment. This highlights the limitations of previous
benchmark studies, as they do not fully capture the comprehensive
performance of log parsers, especially in practical environments.
To understand the aforementioned limitations, we have conducted
a thorough investigation and identified three primary reasons:
• Loghub-2k is small in scale, with each dataset comprising only
2,000 lines of log messages. Considering that real-world systems
often produce a large volume of log data (e.g., tens of gigabytes
per hour [19, 36, 55]), Loghub-2k may not be able to reflect the di-
verse and complex characteristics of log data observed in produc-
tion environments. Given the data-driven nature of most existing
log parsers, their performance could be affected by the limited
scale of Loghub-2k and may not generalize well to real-world
scenarios with much larger and diverse log datasets. Moreover,
the annotation process of Loghub-2k does not follow a rigor-
ous and standardized approach, leading to potential errors and
inconsistencies in the annotated templates.

• Existing studies often lack a comprehensive set of metrics for
evaluation. Most of them only employ message-level metrics
such as group accuracy [63] and parsing accuracy [9]. Theo-
retically, these metrics tend to favor frequently occurring log
templates. For instance, if a simple template involves a large
number of log messages, then successfully parsing this template
would yield good performance, irrespective of the results on the
less frequent templates. In real-world scenarios, log data could
be highly imbalanced. For example, some systems periodically
print log messages to record routine information, such as system
heartbeats (“System uptime: 30 hours”). Such logs might not be
of interest to system operators. However, they could dominate
the overall performance, masking potential errors in processing
infrequent templates.

• The current evaluation of log parsers mainly reports the overall
performance on entire datasets. This approach, however, lacks a
fine-grained analysis of parsing performance for logs with differ-
ent characteristics. We have identified two critical types of logs
that play an essential role in production system maintenance.
These include infrequent log templates, which represent rare
system events that require particular attention, and parameter-
intensive log templates, which provide informative details about
system status and the associated entities. Investigating the per-
formance on these logs helps understand the actual effectiveness
of log parsers in real-world applications.
To address these limitations, we propose conducting a new bench-

mark study for existing log parsers in a more rigorous and practical
setting. This entails the creation of a more diverse collection of log
parsing datasets that are substantially larger in scale, as well as the
design of a more comprehensive benchmarking protocol.

3 DATASET CONSTRUCTION
In this section, we introduce the construction process of the dataset
collection, which intends to reflect the scale and characteristics of
real-world log data and thus enables an accurate assessment of log
parsers’ capabilities in practical scenarios. Particularly, we propose
a rigorous annotation framework designed to ensure the efficiency,
accuracy and consistency of the labeling procedure.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

ciod: LOGIN chdir(<*>) failed.
ciod: Error creating node map from file <*>.

{RAS KERNEL, INFO}

𝑙#, 𝑙$, 𝑙%

Group1:

Group2:

Group3:

Template
Annotation

Log-Template
Matching

Group1:

{RAS BGLMASTER, INFO}
𝑙&

Group2:

{RAS APP, FATAL}

𝑙', 𝑙(, 𝑙)

Group3:

Unmatched
logs

Log
Grouping

CE sym <*>, at <*>, mask <*>

BGLMaster started: ./BGLMaster --ip <*>RAS KERNEL
RAS KERNEL
RAS KERNEL
RAS BGLMASTER
RAS APP
RAS APP
RAS APP

INFO
INFO
INFO
INFO
FATAL
FATAL
FATAL

CE sym 0, at 85, mask 0
CE sym 10, at 58, mask 1
CE sym 23, at 64, mask 2
BGLMaster started: ./BGLMaster --ip 127.0.0.1
ciod: LOGIN chdir(/scratch/full) failed.
ciod: LOGIN chdir(/p/run/) failed.
ciod: Error creating node map from file
/p/gb2/sweep.map.

Component Level Content

𝑙!:
𝑙":
𝑙#:
𝑙$:
𝑙%:
𝑙&:
𝑙':

Preprocessing

Log File 2023-06-03 RAS KERNEL INFO CE sym 0, at 85, mask 0
2023-06-03 RAS KERNEL INFO CE sym 10, at 58, mask 1
…

Template
Refinement Discussion

Top-K frequent
tokens: {mask}

Top-K frequent
tokens: {started}

Top-K frequent
tokens: {coid}

(Sec. 3.2)

(Sec. 3.3)

(Sec. 3.4)

(Sec. 3.5)
(Sec. 3.6)

Figure 1: The overall framework of data annotation

3.1 Overview
To construct the datasets, we select 14 log datasets in Loghub [20]
that span different types of systems, including distributed systems,
supercomputers, and operating systems. Although these datasets
are collected from various types of systems on a large scale, they
lack the essential labels for log parsing assessment. Thus, a neces-
sary preliminary step in our study is annotating these datasets.

The annotation process is carried out by a team of five skilled
data annotators. This team consists of three Ph.D. students with
a minimum of two years of experience in system maintenance re-
search, alongside two industry engineers, both of whom have at
least five years of experience in software development and man-
agement. Given the immense size of each dataset (e.g., millions of
log messages), manual labeling for each log message is infeasible.
Therefore, we design a rigorous annotation framework to assist the
annotation process, which guarantees both labeling efficiency and
accuracy through log grouping and template matching.

Fig. 1 shows the overview of the annotation framework, which
includes five steps: preprocessing, log grouping, template annotation,
log-template matching, and template refinement. To begin, we first
preprocess the raw logs to obtain meaningful log contents. Then,
we apply a hierarchical approach to coarsely partition the logs into
distinct groups. The logs sharing the same template are highly likely
to be divided into the same group, facilitating efficient annotation
procedures. Within each group, all annotators carefully identify
all log templates. In this process, we arrange log messages within
each group in lexicographical order to place similar log messages
together, which enables us to quickly annotate all log templates
instead of labeling each log message. After the annotation, we
employ regular expressions to construct the matching between log
messages and the labeled log templates. If any log messages remain
unmatched, we review and rectify the templates, subsequently
repeating the matching process until all log messages are matched.
Finally, we conduct template refinement to calibrate the results
of all annotators to ensure the accuracy and uniformity of the
annotations across all annotators and datasets. The details of each
step are explained as follows.

3.2 Preprocessing
Following previous work [17, 55, 63], we first apply predefined reg-
ular expressions to extract different fields of log messages. Typical
fields include timestamp, logging level, component, and content.
We then undertake a cleaning process for the logs. This process
specifically targets logs whose content does not include any al-
phabetical characters, such as logs comprised solely of numerical
figures or punctuation marks. Such logs are cleaned due to their

lack of parseable content. We also remove log lines with duplicate
content temporarily to reduce manual efforts in the following steps.

3.3 Log Grouping
After the preprocessing stage, we are still facing a substantial num-
ber of log messages (e.g., millions of log messages in the HDFS
dataset), making it unfeasible to manually annotate each message.
Inspired by [34], we adopt a hierarchical approach to coarsely divide
log messages into multiple groups. Our goal is to group together
log messages sharing the same template, which enables us to la-
bel their template in one pass. To this end, we first partition logs
based on their logging level and component name, which are ex-
tracted during the preprocessing step. These two properties provide
a straightforward means to initially identify logs that belong to the
same template [34]. Second, we use more advanced information
to group logs, i.e., the most frequently occurring tokens of a log
message. Specifically, we employ delimiters such as spaces and
punctuation to tokenize each log message into multiple tokens and
calculate the frequency of each token in the dataset. For each log
message, we calculate the K most frequent tokens and then group
together those log messages that share the common top-K frequent
tokens. The underlying rationale is that the template part of log
messages remains stable, while the parameter part can dynamically
change during runtime. As a result, the most frequent K tokens in
log messages can effectively serve as robust evidence to determine
their belonging to the same group. The value of K for each dataset
has been determined based on their characteristics, with the value
ranging from one to three. Particularly, we maintain a collection of
stop words to be excluded from the top-K frequent tokens, ensuring
that these common words do not interfere with the grouping pro-
cess. In addition to the stop words provided by the Scipy library [2],
we have also manually added certain words to the collection, such
as root, true, etc. Finally, we obtain multiple coarse-grained groups
of log messages where the log messages in each group share the
same logging level, component, and top-K tokens.

3.4 Template Annotation
The objective of the log grouping step is to partition the logs into
coarse-grained groups, ensuring, as far as possible, that logs sharing
the same template are divided into the same group. Therefore, it
is possible that log messages with different templates are grouped
together. To address this issue, we employ manual template anno-
tation to derive ground-truth log templates from each group.

To accelerate the manual annotation process, we sort the log mes-
sages within each group in lexicographical order to place similar
log messages together. Annotators can then quickly recognize the

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

templates of logs based on their structures and similarities. Conse-
quently, annotators are required to annotate only the ground-truth
log templates, eliminating the need for sequential labeling of each
log message. This approach is based on the observation that the
quantity of potential log templates is typically several orders of mag-
nitude smaller than the total number of log messages [25, 55, 63],
which renders manual labeling a feasible task.

In detail, all annotators conduct the manual annotation process
independently, whose individual results will be consolidated to
generate the final results (to be detailed in Sec. 3.6). To ensure the
accuracy and consistency of the annotation, we adhere to the pa-
rameter categories proposed by Li et al. [31] to determine whether
a token is a parameter. We also ask the annotators to apply the
same heuristic rules proposed by Khan et al. [25] to ensure a more
consistent template format, e.g., replace double spaces with a single
space. If a token is identified as a parameter, we will replace it with
"<*>", and the static parts remain unchanged to form the corre-
sponding templates. Since similar log messages have been grouped
and sorted together, we can efficiently bypass numerous log mes-
sages that evidently share the same template when handling each
group, and only the identified templates are recorded. Finally, in
the rare cases where different groups still share identical templates,
we compare the templates derived from different groups, eliminate
duplicate templates, and merge some templates as necessary. This
procedure can eliminate potential errors in the log grouping step,
thereby ensuring the accuracy of the annotations.

3.5 Log-Template Matching
While we generate log templates in the manual annotation step,
we do not record the explicit matching between each log message
and its corresponding template. This is to avoid complicating the
annotation process, and later in the possible deduplication and
merging procedures, it could lead to ambiguous relations and chal-
lenges in maintaining clarity and accuracy. Instead, we resort to
the technique of regular expressions to automatically construct the
matching between logs and templates.

Specifically, we convert each template into a regular expression
by substituting "<*>" with "(.*)", which enables each parameter
position to match strings of any length. Subsequently, for each log
message, we attempt to match it against every log template, halting
when a match is found. Although this step requires pairwise match-
ing between a large number of log messages and log templates, it
can be completed within a reasonable time given that the number
of log templates is typically much smaller than the total count of
log messages (as shown in Table 1). We also further speed up this
matching process by implementing it in a parallel manner.

Additionally, in this matching process, one log message could
match multiple templates. For examples, two templates 𝑇1: "auth
failure; logname=<*> uid=<*> ruser=<*>" and 𝑇2: "auth failure;

logname=<*> uid=<*>" can exist in the same dataset. All log mes-
sages generated from template 𝑇1 can be matched by 𝑇2 since the
last <*> are allowed to match multiple tokens. To address this issue,
when a log message matches multiple regular expressions, we give
priority to the templates with longer static parts for annotation.
The intuition is that when two different templates are capable of
matching the same log message, the template that can match more
non "<*>" characters suggests a higher probability that this log

message belongs to that particular template. In the rare cases where
the two are the same, we choose templates with fewer "<*>" to
generate more compact and simple templates. By applying this rule,
the log messages of 𝑇1 will be correctly matched with 𝑇1.

In instances where specific logmessages fail to match any regular
expression, we will revert to the template annotation step, carefully
review these log messages, make necessary template corrections,
and subsequently repeat the matching process. Ultimately, each
log message should successfully match one regular expression that
corresponds to its annotated template.

3.6 Template Refinement
The last step is template refinement, which aims to consolidate
all five annotators’ results and correct potential errors. After care-
fully comparing the templates from five annotators, we identify
the following inconsistent cases that occur most frequently. All
discrepancies are addressed through discussions to ensure accurate
and uniform annotation.
• One annotator may produce more templates than others. In this
case, it is possible that some of his annotated templates are too
specific. For example, some variables (e.g.,root/True/temp) are
incorrectly identified as constant. We then regard such cases as
parameters following [25].

• The same template may have different formats, e.g.,“1165 bytes

(1.13 KB) sent” may be labeled as “<*> bytes (<*> KB) sent”

or “<*> bytes <*> sent”. In this case, we chose the former one
to retain the original format of the log messages.
Additionally, we quantitatively assess the annotation consistency

of five annotators. This is measured by determining the proportion
of templates where the annotations of the five annotators are iden-
tical. The average consistency score across all datasets attains a
value of 0.926, indicating a high agreement in the annotation step.
Ultimately, all five annotators reached a consensus on all annotated
templates, which is then adopted as the final annotation.

3.7 Annotation Results
The data annotation process finally produces a collection of large-
scale log paring datasets from diverse systems, named Loghub-
2.0. The detailed statistic of Loghub-2.0 is presented in Table 1.
Compared with Loghub-2k, the average number of annotated log
messages has seen a substantial increase, escalating by a factor of
1875, from 2,000 to 3,601,187. Furthermore, the average number of
annotated log templates has increased by 204.2%, from 81.9 to 249.1,
encompassing a broader range of templates. The large scale of the
new dataset collection, Loghub-2.0, enables detailed evaluations of
log parsing techniques, potentially exposing their performance in
more realistic and large-scale scenarios.

4 STUDY DESIGN
In this section, we introduce the design of our benchmark study for
log parsers. Based on the large scale and diversity of Loghub-2.0,
we aim to gain a more in-depth understanding of the log parsers’
effectiveness and suitability for real-world applications. To this end,
we first design three research questions to guide the study. Then,
we select a new set of metrics for comprehensive performance
assessment, which includes a new template-level metric that we
design and existing popular metrics. Finally, we elaborate on the
selected log parsers for evaluation and the experiment setup.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

Table 1: Statistics of Loghub-2.0

System Dataset
Templates
(Loghub-2k)

Templates
(Loghub-2.0)

Annotated Logs
(Loghub-2.0)

Distributed
systems

Hadoop 114 236 179,993
HDFS 14 46 11,167,740

OpenStack 43 48 207,632
Spark 36 236 16,075,117

Zookeeper 50 89 74,273

Super-
computer
systems

BGL 120 320 4,631,261
HPC 46 74 429,987

Thunderbird 149 1,241 16,601,745

Operating
systems

Linux 118 338 23,921
Mac 341 626 100,314

Server
application

Apache 6 29 51,977
OpenSSH 27 38 638,946

Standalone
software

HealthApp 75 156 212,394
Proxifier 8 11 21,320

Average 81.9 249.1 3,601,187

4.1 Research Question
RQ1:What are the differences betweenLoghub-2.0 and Loghub-
2k? In this RQ, we aim to explore whether there are significant
differences in the characteristics of Loghub-2.0 and Loghub-2k,
which could potentially impact the performance of log parsers.
Specifically, We focus on examining two important characteristics:
frequencies of log templates and parameter counts in log templates.
RQ2: How does the performance of log parsers differ when
applied to Loghub-2.0 compared to Loghub-2k? In this RQ,
our focus lies in conducting a comprehensive re-evaluation of log
parsers using Loghub-2.0, encompassing both effectiveness and effi-
ciency aspects. We also explore any potential limitations associated
with the widely-used Loghub-2k. To this end, we carefully compare
the evaluation results obtained from Loghub-2.0 with those from
Loghub-2k, enabling us to draw insightful conclusions.
RQ3: What is the performance of log parsers on logs with
varying characteristics? Inspired by our observations in Sec. 2.2,
we investigate the performance of log parsers on logs with di-
verse template frequencies and parameter counts. This is pivotal,
as certain logs with distinctive characteristics may hold significant
importance in production environments. Particularly, such an eval-
uation becomes feasible only with the use of the labeled datasets in
Loghub-2.0, attributable to its large scale and diversity.

4.2 Evaluation Metrics
Weemploy two categories ofmetrics, i.e., message-level and template-
level metrics, to evaluate log parsers. Message-level metrics account
for the quantities of messages belonging to each template, thereby
favoring templates with a higher volume of log messages. On the
other hand, template-level metrics evenly consider each template, re-
gardless of the number of log messages each template corresponds
to. In our benchmark protocol, we adopt two message-level met-
rics i.e., Group Accuracy (GA) and Parsing Accuracy (PA) and two
template-level metrics i.e., F1-score of Group Accuracy (FGA) and
the F1-score of Template Accuracy (FTA) [25]. In particular, FGA,
proposed by us, is the template-level version of GA. Below, we
elaborate on the metrics used in our study.
4.2.1 Message-Level Metrics. Following existing studies, we utilize
two popular message-level metrics, i.e., GA and PA.

Group Accuracy (GA). GA is first used by Zhu et al. [63], which
assesses the ability to correctly group log messages belonging to
the same template. It is defined as the proportion of correctly grouped
log messages to the total number of log messages. A log message is
regarded as correctly grouped if and only if its template corresponds
to the same set of log messages as the ground truth does.
Parsing Accuracy (PA). PA utilized by Dai et al. [9] assesses the
ability to correctly extract the template parts and parameter parts
for each log message, which is essential for various log analysis
tasks, such as anomaly detection using parameter values [12, 22, 26].
It is defined as the ratio of correctly parsed log messages over the
total number of log messages, where a log message is considered to
be correctly parsed if and only if all tokens of static templates and
dynamic variables are correctly identified.

4.2.2 Template-Level Metrics. Despite the wide use of message-
level metrics [31, 57, 58], they consider the number of log messages
and thus are sensitive to imbalanced templates. For example, in a
dataset where 95% of log messages belong to only 1% of the tem-
plates, a log parser could achieve a GA or PA of 0.95 by accurately
grouping or parsing these 1% of templates, regardless of any parsing
errors for the remaining 99% of templates. In practice, certain infre-
quently occurring templates, such as error-level log messages, may
hold crucial significance, while frequently appearing templates, like
heartbeat messages, might be of less importance. Thus, template-
level metrics, which do not consider the number of log messages
of each template, should also be incorporated to comprehensively
evaluate the performance of log parsers.
F1-score of Group Accuracy (FGA). We propose FGA, which
focuses on the proportion of correctly grouped templates rather
than log messages. Thus, it can be considered as calculating GA at
the template level. Specifically, FGA is the harmonic mean of PGA
(Precision of Group Accuracy) and RGA (Recall of Group Accuracy).
Let 𝑁𝑝 be the number of templates that are generated by a log
parser, and 𝑁𝑐 be the number of templates that are correctly parsed
by the log parser. The correctness here has the same definition as in
GA, i.e., a log template is considered as correctly parsed if and only
if the set of log messages belonging to this template matches the
set indicated in the ground truth. 𝑁𝑔 is the actual correct number
of templates in the ground truth. Based on these notations, we can
define PGA as 𝑁𝑐

𝑁𝑝
and RGA as 𝑁𝑐

𝑁𝑔
. Then, we can calculate FGA as

their harmonic mean, i.e., 2×𝑃𝐺𝐴×𝑅𝐺𝐴
𝑃𝐺𝐴+𝑅𝐺𝐴

F1-score of Template Accuracy (FTA). FTA is the harmonic
mean of RTA (Recall of Template Accuracy) and PTA (Precision of
Template Accuracy) proposed by Khan et al. [25]. FTA has a different
definition of “correct identification” from FGA, and we define a new
notation �̂�𝑐 to represent the number of templates that are correctly
identified by a log parser. For FTA, one template is regarded as
correctly identified if and only if these two conditions hold: (1) the
parsed template’s corresponding set of log messages share the same
ground-truth template; (2) all the tokens of the template are the
same as those of the ground-truth template. Then, we can define
PTA as 𝑁𝑐

𝑁𝑝
and RTA as 𝑁𝑐

𝑁𝑔
. And FTA can be calculated as their

harmonic mean, i.e., 2×𝑃𝑇𝐴×𝑅𝑇𝐴
𝑃𝑇𝐴+𝑅𝑇𝐴 . FTA focuses more on the ability

to identify concrete constant and parameter parts for a particular
log message in comparison to FGA.

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.3 Evaluation Setup
For our evaluation, we carefully select 15 state-of-the-art log parsers
from the literature. Thirteen of them have been previously eval-
uated by Khan et al. [25]. Different from their work, we exclude
LKE [13] from our evaluation, which involves the computation of
pair-wise distances, rendering it impractical for large-scale scenar-
ios. These log parsers are all statistic-based, using techniques that
are based on frequency (i.e., LFA [43], LogCluster [54], Logram [9],
SLCT [53]), similarity (i.e., LenMa [51], LogMine [16], LogSig [52]),
and heuristics (i.e., AEL [24], Drain [17], IPLoM [39], MoLFI [40],
SHISO [42], Spell [11]). For implementation, we directly reuse the
source codes released by previous work [25, 63]. Moreover, we
have incorporated two semantic-based log parsers, namely Uni-
Parser [35] and LogPPT [28], into our benchmarking study. We
implement the UniParser model following the details provided in
its corresponding paper and reuse the source code of LogPPT.

In our evaluation, we apply the same preprocessing rules (e.g.,
regular expressions) and fine-tune the parameter settings through
multiple runs of each log parser. For log parsers that exhibit variabil-
ity in their parsing results due to inherent randomness, e.g., MoLFI
and LogPPT, we perform the evaluation five times. By reporting
the median result, we aim to mitigate potential biases arising from
such randomness and present a more reliable assessment of their
performance. All experiments were conducted on a server equipped
with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 256GB RAM,
and an NVIDIA GeForce GTX3090, running Ubuntu 16.04.7 LTS.

5 STUDY RESULTS
5.1 RQ1: Differences between Loghub-2.0 and

Loghub-2k
In this RQ, we aim to investigate the difference in data characteris-
tics between Loghub-2.0 and Loghub-2k. As previously indicated in
Table 1, Loghub-2.0 significantly surpasses Loghub-2k in terms of
the sizes of log messages and templates, with approximately 1,900
times more messages and 3 times more templates on average. This
substantial increase might imply a significant distinction in feature
distribution across these two dataset collections.

As discussed in Sec. 2.2, there are two pivotal characteristics
inherent to log datasets: the frequency of templates and the param-
eter count of templates. Specifically, the frequency of a log template
refers to the number of log messages belonging to a specific log
template. The parameter count of a log template is the number of
different dynamic parts within each log template, i.e., the number
of "<*>" symbols in a log template. We calculate the distribution of
these two characteristics for each dataset in Loghub-2k and Loghub-
2.0, and plot the corresponding cumulative distribution function
diagrams. Due to space constraints, we only present three repre-
sentative datasets in Loghub-2.0, i.e., Spark, Linux, and OpenSSH.
The figures for all 14 datasets are available at our repository [1].
The distribution of templates’ frequencies The figures on the
left-hand side of Fig. 2 depict the distribution of template frequen-
cies across three datasets. On the one hand, Loghub-2.0 exhibits a
broader range of template frequencies, e.g., in Spark of Loghub-2.0,
the template frequencies range from 1 to over 106, while in the
Loghub-2k, the range is narrower, ranging from 1 to around 103.
On the other hand, the long-tail distribution of Loghub-2.0 is more

Figure 2: Distribution comparison of template frequencies
and parameter counts in Loghub-2.0 and Loghub-2k

pronounced than that of Loghub-2k, indicating more imbalanced
template frequencies. For example, in the Spark dataset of Loghub-
2.0, only 10% of the templates have frequencies exceeding 104, yet
these few templates constitute the majority of the logs.
The distribution of templates’ parameter counts The three
figures on the right-hand side of Fig. 2 present the distribution
of templates’ parameter counts. We can observe that Loghub-2.0
covers a wider array of templates, each with a significantly higher
number of parameters compared to those in Loghub-2k. For ex-
ample, the maximum number of parameters of Spark’s log tem-
plates is 3 in Loghub-2k. However, this number rises to 24 in the
case of Loghub-2.0. A similar trend is observed for both Linux and
OpenSSH, suggesting that Loghub-2.0 has more complex log tem-
plates. This complexity presents a greater challenge for a log parser
in accurately identifying an increased number of parameters.

Finding 1. The distributions of log template frequencies and pa-
rameter counts in Loghub-2k and Loghub-2.0 exhibit significant
differences. Loghub-2.0, in particular, exhibits a more pronounced
imbalance in template frequencies. Additionally, Loghub-2.0 con-
tains a larger number of templates, and each has a larger parame-
ter count on average compared to those in Loghub-2k.

5.2 RQ2: Performance differences of log parsers
on Loghub-2.0 and Loghub-2k

Given the differences in characteristics observed between Loghub-
2k and Loghub-2.0 in RQ1, the potential impact of such differences
on the performance of log parsers remains unclear. To address this,
we apply the selected 15 log parsers to Loghub-2.0 and compare the
performance with Loghub-2k [25, 63] in terms of effectiveness and
efficiency. Specifically, we apply the same experimental settings
(e.g., preprocessing and parameter tuning) described in Sec. 4.3 to all
the evaluated log parsers. To evaluate their effectiveness, we report
metrics including GA, PA, FGA, and FTA for both Loghub-2.0 and
Loghub-2k. Additionally, we record the parsing time for each parser,

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

which is measured from the beginning of loading log data to the
completion of parsing. Following existing work [25, 63], we set a
timeout of 12 hours. If a parser cannot finish parsing a dataset within
this timeframe, we terminate the process and mark it as “timed out”.
Any parser that surpasses this time limit might not be suitable for
practical deployment in a production environment, which often
handles massive amounts of log data on a daily basis [38, 55, 63].
Due to the space limitation, interested readers can refer to our
repository [1] for more detailed evaluation results.

5.2.1 Effectiveness. Fig. 3 presents a box plot illustrating the ef-
fectiveness of all log parsers on Loghub-2k and Loghub-2.0. Each
box encapsulates the distribution of experimental results across all
datasets in terms of a specific metric. In addition, we also denote
the number of datasets each log parser can finish processing within
12 hours in the parentheses next to the parser’s name.

According to Fig. 3, we can make the following observations. (1)
For most log parsers, whether applied to Loghub-2k or Loghub-2.0,
the average FGA is typically lower than GA. This shows that FGA
is a more strict metric because it fairly treats all types of templates
without considering their frequencies. (2) When comparing GA
and FGA across Loghub-2k and Loghub-2.0, we can find that the
decrease of FGA in Loghub-2.0 is more obvious than that in Loghub-
2k. For example, for AEL, the discrepancy between the average GA
and FGA on Loghub-2k is about 0.1. However, on Loghub-2.0, this
value escalates to roughly 0.3. This indicates that the template
distribution in Loghub-2.0 is more imbalanced than Loghub-2k,
which validates our finding in RQ1. (3) Similarly, FTA generally
decreases when compared with PA, either in the Loghub-2k or
Loghub-2.0, suggesting that PA is also dominated by major classes.

Finding 2. Message-level metrics, such as GA and PA, usually
produce higher evaluation results compared to template-level met-
rics like FGA and FTA, due to their sensitivity to imbalanced log
data. The differences between these metrics are more noticeable
in the large-scale Loghub-2.0, which displays greater imbalances.

In addition, it is obvious that the performance of all log parsers
across all metrics displays a significant difference between the
Loghub-2k and Loghub-2.0. Specifically, (1)When comparing Loghub-
2k with the more imbalanced Loghub-2.0, we generally observe
an increase in PA (e.g., in AEL and Drain) and a slight decrease
in GA for most parsers (e.g., LenMA and LFA). This is attributed
to the fact that GA demands precise grouping of log messages be-
longing to the same templates, while PA is calculated based on the
accuracy of parsing individual log messages. The task of accurate
grouping becomes more challenging within the larger Loghub-2.0,
leading to a noticeable increase in PA and a slight decrease in GA
when using Loghub-2.0. (2) All log parsers display a significant
drop in template-level metrics on Loghub-2.0 compared to their
performance on Loghub-2k. For instance, Drain, which achieves the
highest FGA metric on Loghub-2k, sees its average FGA score drop-
ping from 0.75 to approximately 0.55. Similarly, LogPPT, though
achieving the highest FTA on Loghub-2k, experiences a reduction
in its average FTA from roughly 0.64 to 0.5. (3) Furthermore, it is
noteworthy that the variances of the four metrics across different
datasets for most log parsers (e.g., AEL, Drain, LenMa and LogMine)
have significantly increased, visually represented by the expanded

range of the box plot. This implies that existing parsers struggle to
achieve consistent effectiveness across different large-scale systems.

Finding 3. The evaluation results obtained on the Loghub-2k do
not consistently hold when the log parsers are applied to the large-
scale Loghub-2.0. On Loghub-2.0, existing parsers experience a
performance drop and an increase in the variance of all metrics.

Additionally, semantic-based log parsers, such as UniParser and
LogPPT, have consistently demonstrated notably higher PA and
FTA scores compared to other log parsers on both Loghub-2k and
Loghub-2.0 datasets. This suggests that semantic information can
facilitate accurately identifying the template of individual log mes-
sages. However, their GA and FGA scores are generally lower than
those of other log parsers. This can be attributed to their disregard
for global information, such as statistical frequency. As a result,
these parsers are more prone to categorizing logs from the same
templates into different groups, leading to lower GA and FGA scores.
Furthermore, although semantic-based log parsers have achieved
commendable performance on Loghub-2k, the performance met-
rics also decrease dramatically when applied to Loghub-2.0. The
primary reason is that Loghub-2k contain too few log messages and
log templates, making it easy for these models to learn the features
of the entire dataset. For instance, in LogPPT, the default number
of prompts for tuning is 32, however, many datasets in Loghub-2k
have even fewer than 32 templates, resulting in LogPPT achieving
near-perfect accuracy on these datasets. In contrast, since the num-
ber of log messages and log templates in Loghub-2.0 significantly
increases, it becomes challenging for these models to generalize to
more unseen log messages based on limited training samples.

Finding 4. Semantic-based log parsers are more capable of pars-
ing individual logs, evidenced by their higher PA and FTA. How-
ever, they exhibit lower grouping-related metrics, due to their
neglect of global information. Moreover, the performance of these
log parsers may decline on larger and more diverse datasets in
Loghub-2.0, particularly when the number of annotated samples
available for training is limited.

5.2.2 Efficiency. For the Loghub-2k, all log parsers can successfully
parse all 14 datasets. However, when these log parsers are applied
to the larger-scale datasets of Loghub-2.0, most of them (9 out of 15)
are unable to complete the parsing process for all 14 datasets within
12 hours. Due to the space limit, we have uploaded the detailed
time cost for each parser processing each dataset to our replication
repository [1]. As depicted in Fig. 3, only six parsers (i.e., Drain,
IPLoM, LFA, LogCluster, LogSig, UniParser, and LogPPT) success-
fully complete parsing on all 14 datasets of Loghub-2.0. Certain
parsers, such as LenMa and LogMine, despite demonstrating supe-
rior performance, are unable to process larger datasets efficiently.
Considering the substantial demands for log parsing throughput in
real-world systems, e.g., millions of logs per hour [55], log parsers
that are unable to complete the parsing process within a reasonable
timeframe (i.e., 12 hours) may have limited applicability in practi-
cal scenarios. Moreover, semantic-based log parsers like LogPPT
require GPU computational resources. When computing with a
CPU, their time consumption is considerably higher compared to

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 3: The evaluation results of all log parsers on Loghub-2k and Loghub-2.0

other efficient statistic-based log parsers like Drain. This potentially
hampers their adoption in scenarios with resource constraints.

Finding 5. 9 out of 15 log parsers are unable to process all 15
datasets of Loghub-2.0 within a reasonable 12-hour timeframe.
Moreover, semantic-based methods typically demand more com-
putational resources than statistic-based parsers.

5.3 RQ3: Performances of log parsers on logs
with different characteristics

Previous studies [25, 63] typically report the overall performance of
log parsers on the entire full set of a dataset. However, this may not
fully characterize their effectiveness on logs with diverse charac-
teristics, especially those that demand more attention in real-world
system maintenance. To address this limitation, our benchmarking
study adopts a more granular approach by evaluating log parsers
on specific logs with varying characteristics. We primarily focus
on the characteristics of template frequency and parameter count.
In specific, log templates with a lower frequency often represent
rare events, hidden problems, and potential failures. Besides, log
templates with more parameters might be more informative to on-
site engineers for analysis. Thus, it is crucial to accurately parse
these two types of log messages.

To this end, we first apply log parsers to parse the entire dataset.
We then select subsets of logs with different characteristics and
calculate the performance on each subset. This approach ensures
that the input data for each parser are consistent with that in RQ2,
instead of merely parsing the selected subset of logs. Due to the
space limitation, we only present the results of five representative
log parsers that are capable of parsing the majority of datasets in
Loghub-2.0. The complete results can be found in our repository [1].

5.3.1 Performance with different template frequencies. As men-
tioned in RQ1, Loghub-2.0 exhibits a higher imbalance in template
frequencies. Considering the data-driven nature of log parsers, their
performance could be affected. Hence, we investigate the perfor-
mance on template frequencies by looking into the relative infre-
quent and frequent logs. In particular, we evaluate log parsers on

the templates with top and bottom k% frequencies, where k is set
as 5, 10, and 20, respectively. Then, we report the average scores of
these four metrics. Fig. 4 illustrates the results when k=10, while
the results for k=5 and 20 can be found in our repository [1].

As illustrated in Fig. 4, all log parsers exhibit worse GA and
FGA on frequent logs than on infrequent ones. Taking LogPPT as
an example, its GA and FGA scores approach 0.95 for infrequent
templates, while dropping below 0.5 for frequent ones. We explain
the performance drop as follows. Considering grouping accuracy
requires a parser to correctly group all logs that belong to a certain
template, the grouping will become more challenging as more log
messages should be included.

In contrast, all log parsers demonstrate lower average PA for
infrequently occurring log templates compared to frequent ones.
This is expected for statistic-based log parsers, as the less frequency
of a template provides less information and evidence (e.g., count
discrepancy between static and dynamic tokens) for the parser,
resulting in decreased parsing accuracy. For semantic-based log
parsers, such as LogPPT, which typically require a sample of logs for
training, the sampling process reduces the likelihood of selecting
infrequent templates. This, in turn, decreases the parsing accuracy
of infrequent templates compared to high-frequency templates.

Finding 6. Existing log parsers exhibit varying effectiveness
when dealing with templates of different frequencies. They typi-
cally achieve lower GA and FGA for frequent templates, as the
grouping is more challenging for templates with more log mes-
sages. Besides, they achieve lower PA and FTA for infrequent
templates, as less evidence (e.g., training data) is available to
guide the accurate parsing of each log message.

5.3.2 Performance with different parameter counts. Our study in
RQ1 demonstrates that parameter counts of templates can vary in
a large range (e.g., 0 to 25 for the Spark dataset). Therefore, we also
evaluate parsing effectiveness for templates with different numbers
of parameters. To achieve this, we classify the logs in each dataset
within Loghub-2.0 into three categories based on their parameter
count: logs with no parameters, logs with one to four parameter

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

Figure 4: The evaluation results of log parsers on logs with different frequencies

Figure 5: The evaluation results of log parsers on logs with different parameter counts

count, and logs with five or more parameters. We then utilize the
same approach in Sec. 5.3.1 to calculate the average of four metrics
for each log parser on each category, respectively.

According to the results illustrated in Fig. 5, we can observe that
all log parsers exhibit a significant decline across all four perfor-
mance metrics as the parameter counts increase. More specifically,
these parsers perform exceptionally well on logs without parame-
ters, significantly surpassing their overall performance on all logs
as presented in Fig. 3. For example, Drain achieves an average
score exceeding 0.95 on all four metrics on logs without parameters,
much higher than overall performance on the complete set of logs.
When dealing with logs with more than five parameters, all log
parsers exhibit notably poor performance. For example, LogPPT
only attains an average FGA of 0.16, while the average FGA of other
methods does not surpass 0.03. This suggests that despite many
log parsers demonstrating relatively high performance on entire
datasets, their performance on logs with more parameters remains
less than satisfactory, potentially resulting in distracting parsing
errors in real-world applications.

Finding 7. Despite the high scores achieved by the log parsers
on the entire datasets, their parsing effectiveness remains unsat-
isfactory when dealing with parameter-intensive log templates.

5.4 Summary of all research questions
We can make the following summaries of all research questions:
(1) The proposed collection of large-scale datasets for log pars-
ing, Loghub-2.0, exhibits significantly different characteristics of
log data compared to the commonly used Loghub-2k. Loghub-2.0
presents greater challenges for existing log parsers due to its larger
scale and more complex characteristics. (2) Our evaluation results
indicate that Drain is the most performant parsers that are more ca-
pable of grouping log messages, as evidenced by the highest average
GA and FGA. On the other hand, semantic-based methods (e.g., Uni-
Parser and LogPPT) exhibit stronger abilities in distinguishing each
token as either constant or dynamic parts. However, these meth-
ods compromise their effectiveness in grouping log messages with
the same templates. This is because classification errors in tokens
can easily lead to incomplete groups. (3) Despite the encouraging

results shown in the Loghub-2k, the parsing performance remains
unsatisfactory when applied to Loghub-2.0. This is particularly
noticeable when parsing infrequent logs and parameter-intensive
logs. (4) Moreover, the efficiency of the majority of log parsers fails
to meet the demands of large-scale application scenarios.

6 DISCUSSION
6.1 Implications
Based on our findings, we have identified the following implications,
which we believe could benefit future research on log parsing.
Consider both levels of metrics in combination.While most
existing tasks utilize message-level metrics such as GA and PA to
assess performance, these measures are often dominated by log
templates with high frequencies in large-scale application scenarios,
thereby yielding higher scores. In contrast, template-level metrics
are resistant to the imbalanced frequencies of templates and thus
can accurately reflect the parsing performance on datasets with
diverse template distributions. Hence, these two types of metrics
may be contemplated in conjunction, and one can be prioritized
over the other based on specific requirements. For instance, if the
focus is more on the parsing accuracy of frequent log templates and
one can tolerate errors in infrequent templates, then message-level
metrics are more appropriate, and vice versa.
Evaluate the performance across logs with different charac-
teristics. Although certain log parsers have exhibited high overall
performance on specific datasets, their parsing performance is still
lacking when handling infrequent and parameter-intensive log tem-
plates. Considering the importance of these logs, as underscored in
Section 2.2, it is crucial to concentrate specifically on performance
within these logs. The evaluation protocol we propose can unearth
the performance of log parsers on these log templates more com-
prehensively. Consequently, future work should pay attention to
this aspect when designing new log parsers, thereby enhancing
their applicability in real-world scenarios.
Place greater emphasis on efficiency. As discussed in Sec. 5.2.2,
many existing log parsers fail to meet the performance require-
ments of large-scale application scenarios, a fact not represented
in Loghub-2k. Considering the large volume of logs in practical

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

settings, it is imperative that future log parsers are designed to meet
the performance demands of specific applications.
Try to combine semantic and statistical information. Accord-
ing to finding 4, semantic-based log parsers possess superior ca-
pabilities in distinguishing parameters from templates, which also
substantiates the significance of semantic information in the process
of log parsing. However, their grouping abilities are compromised
due to the neglect of global information. This is inevitable, given
that these log parsers exclusively process each log message in iso-
lation. A potential avenue for future research could involve the
combination of semantic and statistical information in logs, thereby
simultaneously enhancing the parsing and grouping capabilities.

6.2 Threats to Validity
Annotation errors The primary threat of this study is the potential
annotation errors in Loghub-2.0, which is inevitable without the
source code. To mitigate this issue as much as possible, we have
designed a stringent annotation framework with a team comprising
five members with significant experience in log analysis research.
Limited log parsers The selection of log parsers is limited, as not
all existing log parsers are open-sourced due to industry confiden-
tiality reasons [55]. Nevertheless, the selected parsers have included
state-of-the-art log parsers published at top-tier conferences and
covered all existing categories of technology. Furthermore, we have
made our dataset available and implemented our benchmark proto-
col in a unified and user-friendly manner. This allows for the easy
comparison of additional log parsers with existing ones.
Implementation and settings To mitigate the bias of implemen-
tation and settings, we have adopted the source code of several log
parsers from the widely-used benchmark [28, 63]. For the newly
incorporated log parsers, we have either used the source code pro-
vided by the original authors or carefully replicated them to ensure
the fidelity of the results. Additionally, we have tuned the parame-
ters of each log parser to optimize the results.

7 CONCLUSION
In this paper, we conduct a more rigorous and practical large-scale
evaluation for log parsing techniques. We propose a log template
annotation framework that ensures both efficiency and accuracy,
and have annotated a new collection of large-scale datasets for log
parsing, which more accurately reflects the scale and distribution of
log data in real-world situations. Our proposed benchmarking pro-
tocol, inclusive of a new template-level metric and an evaluation of
the performance of log parsers on logs with varying characteristics,
offers a more comprehensive and in-depth analysis of log parsers’
performance. Furthermore, our re-evaluation of selected log parsers
using Loghub-2.0 uncovers valuable findings of the limitations of
existing log parsers and benchmarks. We believe that our work,
together with the open-source dataset Loghub-2.0 and benchmark,
could benefit future research in the field of log analysis.

ACKNOWLEDGMENT
The work described in this paper was supported by the Research
Grants Council of the Hong Kong Special Administrative Region,
China (No. CUHK 14206921 of the General Research Fund). We
extend our sincere gratitude to the anonymous reviewers for their
constructive feedback.

REFERENCES
[1] 2023. The replication repository of our evaluation artifacts. https://github.com/

logpai/Loghub-2.0 [Online; accessed 1 Dec 2023].
[2] 2023. Scipy. https://scipy.org/ [Online; accessed 1 July 2023].
[3] Anunay Amar and Peter C Rigby. 2019. Mining historical test logs to predict bugs

and localize faults in the test logs. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 140–151.

[4] James H Andrews. 1998. Testing using log file analysis: tools, methods, and
issues. In Proceedings 13th IEEE International Conference on Automated Software
Engineering (Cat. No. 98EX239). IEEE, 157–166.

[5] Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, Tomas Cerny, Karel
Frajtak, Miroslav Bures, Pavel Tisnovsky, and Dongwan Shin. 2020. On matching
log analysis to source code: A systematic mapping study. In Proceedings of the
International Conference on Research in Adaptive and Convergent Systems. 181–
187.

[6] An Ran Chen, Tse-Hsun Chen, and Shaowei Wang. 2021. Pathidea: Improving
information retrieval-based bug localization by re-constructing execution paths
using logs. IEEE Transactions on Software Engineering (TSE) 48, 8 (2021), 2905–
2919.

[7] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jiang. 2018. An
automated approach to estimating code coverage measures via execution logs. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 305–316.

[8] Zhichao Chen, Junjie Chen, Weijing Wang, Jianyi Zhou, Meng Wang, Xiang
Chen, Shan Zhou, and Jianmin Wang. 2023. Exploring better black-Box test case
prioritization via log analysis. ACM Transactions on Software Engineering and
Methodology 32, 3 (2023), 1–32.

[9] Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient Log Parsing Using 𝑛 n-Gram Dictionaries. IEEE Transactions
on Software Engineering (TSE) 48, 3 (2020), 879–892.

[10] Hetong Dai, Yiming Tang, Heng Li, and Weiyi Shang. 2023. PILAR: Studying and
Mitigating the Influence of Configurations on Log Parsing. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 818–829.

[11] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[13] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining (ICDM). IEEE, 149–158.

[14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical
study on logging practices in industry. In Companion Proceedings of the 36th
International Conference on Software Engineering. 24–33.

[15] Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan
Yang. 2022. Investigating and improving log parsing in practice. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (FSE). 1566–1577.

[16] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM). 1573–1582.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[18] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1–37.

[19] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua Ma, Yining
Wei, Yingnong Dang, Saravanakumar Rajmohan, et al. 2022. An empirical study of
log analysis at Microsoft. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(FSE). 1465–1476.

[20] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2020. Loghub: A large
collection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

[21] Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R Lyu. 2021. Semparser: A
semantic parser for log analysis. arXiv preprint arXiv:2112.12636 (2021).

[22] Tong Jia, Lin Yang, Pengfei Chen, Ying Li, Fanjing Meng, and Jingmin Xu. 2017.
Logsed: Anomaly diagnosis through mining time-weighted control flow graph
in logs. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD).
IEEE, 447–455.

https://github.com/logpai/Loghub-2.0
https://github.com/logpai/Loghub-2.0
https://scipy.org/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

[23] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2023. Llmparser: A llm-based log
parsing framework. arXiv preprint arXiv:2310.01796 (2023).

[24] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting execution logs to execution events for enterprise applications (short
paper). In 2008 The Eighth International Conference on Quality Software. IEEE,
181–186.

[25] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for assessing the accuracy of log message template identification tech-
niques. In Proceedings of the 44th International Conference on Software Engineering
(ICSE). 1095–1106.

[26] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2023.
Impact of Log Parsing on Log-based Anomaly Detection. arXiv preprint
arXiv:2305.15897 (2023).

[27] Van-Hoang Le and Hongyu Zhang. 2022. Log-based anomaly detection with
deep learning: How far are we?. In Proceedings of the 44th international conference
on software engineering (ICSE). 1356–1367.

[28] Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-based Few-
shot Learning. arXiv preprint arXiv:2302.07435 (2023).

[29] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R Lyu. 2023. Exploring the Effectiveness of LLMs in Automated Logging
Generation: An Empirical Study. arXiv preprint arXiv:2307.05950 (2023).

[30] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie Huang,
Jiazhen Gu, Pinjia He, andMichael R Lyu. 2024. Go Static: Contextualized Logging
Statement Generation. arXiv preprint arXiv:2402.12958 (2024).

[31] Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He, Qingwei Lin,
and Dongmei Zhang. 2023. Did We Miss Something Important? Studying and
Exploring Variable-Aware Log Abstraction. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE).

[32] Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Minzhi Yan, and Michael R Lyu. 2023. Scalable and Adap-
tive Log-based Anomaly Detection with Expert in the Loop. arXiv preprint
arXiv:2306.05032 (2023).

[33] Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. 2022. Tell: log
level suggestions via modeling multi-level code block information. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 27–38.

[34] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting hidden structures via iterative clustering for log
compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873.

[35] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uniparser: A unified log
parser for heterogeneous log data. In Proceedings of the ACM Web Conference
2022 (WWW). 1893–1901.

[36] Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Wei Liu. 2021.
LogAssist: Assisting log analysis through log summarization. IEEE Transactions
on Software Engineering (TSE) 48, 9 (2021), 3227–3241.

[37] JunchenMa, Yang Liu, HongjieWan, and Guozi Sun. 2023. Automatic Parsing and
Utilization of System Log Features in Log Analysis: A Survey. Applied Sciences
13, 8 (2023), 4930.

[38] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.
2018. {Kernel-Supported}{Cost-Effective} Audit Logging for Causality Tracking.
In 2018 USENIX Annual Technical Conference (USENIX ATC). 241–254.

[39] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD).
1255–1264.

[40] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In Proceedings of the 26th Conference on Program
Comprehension. 167–177.

[41] Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli, and
Lionel C Briand. 2021. Log-based slicing for system-level test cases. In Proceedings
of the 30th ACM SIGSOFT international symposium on software testing and analysis
(ISSTA). 517–528.

[42] Masayoshi Mizutani. 2013. Incremental mining of system log format. In 2013
IEEE International Conference on Services Computing. IEEE, 595–602.

[43] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In 2010 7th IEEE Working Conference

on Mining Software Repositories (MSR). IEEE, 114–117.
[44] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. 2009. Efficiently

extracting operational profiles from execution logs using suffix arrays. In 2009
20th International Symposium on Software Reliability Engineering. IEEE, 41–50.

[45] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured compara-
tive analysis of systems logs to diagnose performance problems. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). 353–366.

[46] Paolo Notaro, Soroush Haeri, Jorge Cardoso, and Michael Gerndt. 2023. LogRule:
Efficient Structured Log Mining for Root Cause Analysis. IEEE Transactions on
Network and Service Management (2023).

[47] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry practices and event logging: Assessment of a critical software
development process. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), Vol. 2. IEEE, 169–178.

[48] Daan Schipper, Maurício Aniche, and Arie van Deursen. 2019. Tracing back
log data to its log statement: from research to practice. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 545–549.

[49] Issam Sedki, Abdelwahab Hamou-Lhadj, Otmane Ait-Mohamed, and Naser Ezzati-
Jivan. 2023. Towards a Classification of Log Parsing Errors. In 2023 IEEE/ACM
31st International Conference on Program Comprehension (ICPC). IEEE, 84–88.

[50] Weiyi Shang. 2012. Bridging the divide between software developers and op-
erators using logs. In 2012 34th international conference on software engineering
(ICSE). IEEE, 1583–1586.

[51] Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv preprint arXiv:1611.03213 (2016).

[52] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-
tem events from raw textual logs. In Proceedings of the 20th ACM international
conference on Information and knowledge management (CIKM). 785–794.

[53] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[54] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1–7.

[55] Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong Liu,
Lingling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, et al. 2022. SPINE: a
scalable log parser with feedback guidance. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE). 1198–1208.

[56] Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E Hassan. 2021. Im-
proving state-of-the-art compression techniques for log management tools. IEEE
Transactions on Software Engineering (TSE) 48, 8 (2021), 2748–2760.

[57] Siyu Yu, Ningjiang Chen, YifanWu, andWensheng Dou. 2023. Self-supervised log
parsing using semantic contribution difference. Journal of Systems and Software
200 (2023), 111646.

[58] Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu. 2023. Brain: Log Parsing
with Bidirectional Parallel Tree. IEEE Transactions on Services Computing (TSC)
(2023).

[59] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. Sherlog: error diagnosis by connecting clues from run-time logs.
In Proceedings of the fifteenth International Conference on Architectural support
for programming languages and operating systems. 143–154.

[60] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,
and Fabio Pianese. 2023. System Log Parsing: A Survey. IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2023).

[61] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. 2019.
An exploratory study of logging configuration practice in java. In 2019 IEEE
international conference on software maintenance and evolution (ICSME). IEEE,
459–469.

[62] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. 2023. Loghub:
A large collection of system log datasets for ai-driven log analytics. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
355–366.

[63] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

Received 14-DEC-2023; accepted 2024-03-02

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Log Parsing Techniques
	2.2 Motivation

	3 Dataset Construction
	3.1 Overview
	3.2 Preprocessing
	3.3 Log Grouping
	3.4 Template Annotation
	3.5 Log-Template Matching
	3.6 Template Refinement
	3.7 Annotation Results

	4 Study Design
	4.1 Research Question
	4.2 Evaluation Metrics
	4.3 Evaluation Setup

	5 Study Results
	5.1 RQ1: Differences between nmand Loghub-2k
	5.2 RQ2: Performance differences of log parsers on nmand Loghub-2k
	5.3 RQ3: Performances of log parsers on logs with different characteristics
	5.4 Summary of all research questions

	6 Discussion
	6.1 Implications
	6.2 Threats to Validity

	7 Conclusion
	References

